scholarly journals A Continuous Model of Matter based on AEONs

2018 ◽  
Author(s):  
Wim Vegt

In this Manuscript evidence will be provided that the famous Quantum Mechanical "Schrödinger Wave Equation" and the Relativistic Quantum Mechanical "Dirac Equation"are nothing more and nothing less than the Electromagnetic Continuity Equation, written in a complex way.

2020 ◽  
Vol 5 (10) ◽  
pp. 1212-1224
Author(s):  
Wim Vegt

An important milestone in quantum physics has been reached by the publication of the Relativistic Quantum Mechanical Dirac Equation in 1928. However, the Dirac equation represents a 1-Dimensional quantum mechanical equation which is unable to describe the 4-Dimensional Physical Reality. In this article the 4-Dimensional Relativistic Quantum Mechanical Dirac Equation expressed in the vector probability functions  and the complex conjugated vector probability function  will be published. To realize this, the classical boundaries of physics has to be changed. It is necessary to go back in time 300 years ago. More than 200 years ago before the Dirac Equation had been published. A Return to the Inception of Physics. The time of Isaac Newton who published in 1687 in the “Philosophiae Naturalis Principia Mathematica” a Universal Fundamental Principle in Physics which was in Harmony with Science and Religion. The Universal Path, the Leitmotiv, the Universal Concept in Physics. Newton found the concept of “Universal Equilibrium” which he formulated in his famous third equation Action = - Reaction. This article presents a New Kind of Physics based on this Universal Fundamental Concept in Physics which results in a New Approach in Quantum Physics and General Relativity. The physical concept of quantum mechanical probability waves has been created during the famous 1927 5th Solvay Conference. During that period there were several circumstances which came together and made it possible to create an unique idea of material waves being complex (partly real and partly imaginary) and describing the probability of the appearance of a physical object (elementary particle). The idea of complex probability waves was new in the beginning of the 20th century. Since then the New Concept has been protected carefully within the Copenhagen Interpretation. When Schrödinger published his famous material wave equation in 1926, he found spherical and elliptical solutions for the presence of the electron within the atom. The first idea of the material waves in Schrödinger’s wave equation was the concept of confined Electromagnetic Waves. But according to Maxwell this was impossible. According to Maxwell’s equations Electromagnetic Waves can only propagate along straight lines and it is impossible that Light (Electromagnetic Waves) could confine with the surface of a sphere or an ellipse. For that reason, these material waves in Schrödinger’s wave equation could only be of a different origin than Electromagnetic Waves. Niels Bohr introduced the concept of “Probability Waves” as the origin of the material waves in Schrödinger’s wave equation. And defined the New Concept that the electron was still a particle but the physical presence of the electron in the Atom was equally divided by a spherical probability function. In the New Theory it will be demonstrated that because of a mistake in the Maxwell Equations, in 1927 Confined Electromagnetic waves could not be considered to be the material waves expressed in Schrödinger's wave equation. The New Theory presents a new equation describing electromagnetic field configurations which are also solutions of the Schrodinger's wave equation and the relativistic quantum mechanical Dirac Equation and carry mass, electric charge and magnetic spin at discrete values.


2020 ◽  
Vol 1 (2) ◽  
pp. 34-61
Author(s):  
Wim Vegt

An important milestone in quantum physics was reached by the publication of the Relativistic Quantum Mechanical Dirac Equation in 1928. However, the Dirac equation represents a 1-Dimensional quantum mechanical equation which is unable to describe the 4-Dimensional Physical Reality. In this article, the 4-Dimensional Relativistic Quantum Mechanical Dirac Equation expressed in the vector probability functions and the complex conjugated vector probability function will be discussed. To realize this, the classical boundaries of physics has to be changed. It is necessary to go back in time more than 200 years ago before the Dirac Equation had been published. Isaac Newton who published in 1687 in the “Philosophiae Naturalis Principia Mathematica” a Universal Fundamental Principle in Physics was in Harmony with Science and Religion. Newton found the concept of “Universal Equilibrium” which he mentioned in his famous third equation, Action = Reaction. This article presents a New Kind of Physics based on this Universal Fundamental Concept in Physics which results in a New Approach in Quantum Physics and General Relativity. The physical concept of quantum mechanical probability waves has been originated during the famous 5th Solvay Conference in 1927. During that period there were several circumstances that came together and made it possible to create a unique idea of material waves being complex (partly real and partly imaginary) and describing the probability of the appearance of a physical object (elementary particle). The idea of complex probability waves was new in the beginning of the 20th century. Since then the New Concept has been protected carefully within the Copenhagen Interpretation.   When Schrödinger published his well-known material wave equation in 1926, he found spherical and elliptical solutions for the presence of the electron within the atom. The first idea of the material waves in Schrödinger's wave equation was the concept of confined Electromagnetic Waves. But according to Maxwell, this was impossible. According to Maxwell's equations, Electromagnetic Waves can only propagate along straight lines and it is impossible that Light (Electromagnetic Waves) could confine with the surface of a sphere or an ellipse. For that reason, these material waves in Schrödinger's wave equation could only be of a different origin than Electromagnetic Waves. Niels Bohr introduced the concept of “Probability Waves” as the origin of the material waves in Schrödinger’s wave equation. And defined the New Concept that the electron was still a particle but the physical presence of the electron in the Atom was equally divided by a spherical probability function. In the New Theory, it will be demonstrated that because of a mistake in the Maxwell Equations, in 1927 Confined Electromagnetic waves could not be considered to be the material waves expressed in Schrödinger's wave equation. The New Theory presents a new equation describing electromagnetic field configurations which are also solutions of the Schrodinger's wave equation and the relativistic quantum mechanical Dirac Equation and carry mass, electric charge, and magnetic spin at discrete values.


2020 ◽  
pp. 1-13
Author(s):  
Wim Vegt ◽  

A Return to the Beginning (Inception|) of Physics. The time of Isaac Newton who published in 1687 in the “Philosophiae Naturalis Principia Mathematica” a Universal Fundamental Principle in Physics which was in Harmony with Science and Religion. The Universal Path, the Leitmotiv, the Universal Concept in Physics. Newton found the concept of “Universal Equilibrium” which he formulated in his famous third equation Action = - Reaction. This article presents a New Kind of Physics based on this Universal Fundamental Concept in Physics which results in a New Approach in Quantum Physics and General Relativity. The physical concept of quantum mechanical probability waves has been created during the famous 1927 5th Solvay Conference. During that period there were several circumstances which came together and made it possible to create an unique idea of material waves being complex (partly real and partly imaginary) and describing the probability of the appearance of a physical object (elementary particle). The idea of complex probability waves was new in the beginning of the 20th century. Since then the New Concept has been protected carefully within the Copenhagen Interpretation. When Schrödinger published his famous material wave equation in 1926, he found spherical and elliptical solutions for the presence of the electron within the atom. The first idea of the material waves in Schrödinger’s wave equation was the concept of confined Electromagnetic Waves. But according to Maxwell this was impossible. According to Maxwell’s equations Electromagnetic Waves can only propagate along straight lines and it is impossible that Light (Electromagnetic Waves) could confine with the surface of a sphere or an ellipse. For that reason these material waves in Schrödinger’s wave equation could only be of a different origin than Electromagnetic Waves. Niels Bohr introduced the concept of “Probability Waves” as the origin of the material waves in Schrödinger’s wave equation. And defined the New Concept that the electron was still a particle but the physical presence of the electron in the Atom was equally divided by a spherical probability function. In the New Theory it will be demonstrated that because of a mistake in the Maxwell Equations, in 1927 Confined Electromagnetic waves could not be considered to be the material waves expressed in Schrödinger’s wave equation. The New Theory presents a new equation describing electromagnetic field configurations which are also solutions of the Schrodinger’s wave equation and the relativistic quantum mechanical Dirac Equation and carry mass, electric charge and magnetic spin at discrete values


2018 ◽  
Vol 42 (5) ◽  
pp. 509-526 ◽  
Author(s):  
Mustafa DERNEK ◽  
Semra GÜRTAŞ DOĞAN ◽  
Yusuf SUCU ◽  
Nuri ÜNAL

Author(s):  
Kenneth G. Dyall ◽  
Knut Faegri

This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation of approximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1549-1556 ◽  
Author(s):  
V. B. BEZERRA ◽  
GEUSA DE A. MARQUES

We consider the problem of a relativistic electron in the presence of a Coulomb potential and a magnetic field in the background spacetime corresponding to a cosmic string. We find the solution of the corresponding Dirac equation and determine the energy spectrum of the particle.


2017 ◽  
Vol 32 (23n24) ◽  
pp. 1750143 ◽  
Author(s):  
Kang Wang ◽  
Yu-Fei Zhang ◽  
Qing Wang ◽  
Zheng-Wen Long ◽  
Jian Jing

The influence of the noncommutativity on the average speed of a relativistic electron interacting with a uniform magnetic field within the minimum evolution time is investigated. We find that it is possible for the wave packet of the electron to travel faster than the speed of light in vacuum because of the noncommutativity. It is a clear signature of violating Lorentz invariance in the noncommutative relativistic quantum mechanical region.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950140 ◽  
Author(s):  
L. C. N. Santos ◽  
C. C. Barros

In this paper, we study the Dirac equation in the Rindler spacetime. The solution of the wave equation in an accelerated reference frame is obtained. The differential equation associated to this wave equation is mapped into a Sturm–Liouville problem of a Schrödinger-like equation. We derive a compact expression for the energy spectrum associated with the Dirac equation in an accelerated reference. It is shown that the noninertial effect of the accelerated reference frame mimics an external potential in the Dirac equation and, moreover, allows the formation of bound states.


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850186 ◽  
Author(s):  
Hong-Yi Su ◽  
Jing-Ling Chen

It was known that a free, non-relativistic particle in a superposition of positive momenta can, in certain cases, bear a negative probability current — hence termed quantum backflow. Here, it is shown that more variations can be brought about for a free Dirac particle, particularly when negative-energy solutions are taken into account. Since any Dirac particle can be understood as an antiparticle that acts oppositely (and vice versa), quantum backflow is found to arise in the superposition (i) of a well-defined momentum but different signs of energies, or more remarkably (ii) of different signs of both momenta and energies. Neither of these cases has a counterpart in non-relativistic quantum mechanics. A generalization by using the field-theoretic formalism is also presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document