scholarly journals Effect of long term fertilization on pH, EC and exchangeable Ca and Mg in vertisols under sorghum-wheat cropping sequence

2018 ◽  
Author(s):  
Jayalakshmi Mitnala

Long term manuring and fertilizer experiments conducted in India showed declining trend in productivity even with the application of NPK fertilizers under modern intensive farming. Neither organic source alone nor inorganic fertilizers can achieve sustainability in crop production under intensive agriculture, where nutrient turnover in soilplant system is much higher. However, their combined use appeared promising in enhanced crop productivity besides improving soil fertility. The mineralization of carbon and nitrogen plays significant role in availability ofnutrients. However, the role of mineralization determines the flux of nutrient flow. When fertilizer nitrogen is added to the soil, the portion of it is immobilized, but the mineralization rate of recently immobilized fertilizer is greater than indigenous organic nitrogen. The rate of carbon and nitrogen mineralization is different for various cropping systems and hence, it is necessary to study mineralization. N-mineralization potential increases with increasing nitrogen rate in dryland and irrigation conditions. In order to investigate the long term influence of fertilization on soil labile carbon and N mineralization, the present study was undertaken in sorghum-wheat cropping sequence on Vertisol.

2018 ◽  
Author(s):  
Jayalakshmi Mitnala

Sorghum and wheat are the premier food grain crops of the peninsular central India and in particular of Maharashtra. There has been a phenomenal increase in its production after mid sixties with the introduction of high yielding varieties. Increase in production was achieved through increase in area as well as productivity. Inputs like improved seeds, irrigation, fertilizers etc. has given a boost to productivity. Continuous addition of chemical fertilizers poses problems like toxicity due to high amounts of salts as residues of fertilizer and deterioration of the physico-chemical properties. Organic manure ameliorates this problem as organic matter helps in increasing adsorptive power of soil for cations and anions particularly phosphate and nitrate. Long term manuring and fertilizer experiments conducted in India showed declining trend in productivity even with the application of NPK fertilizers under modern intensive farming. Neither organic source alone nor inorganic fertilizers can achieve sustainability in crop production under intensive agriculture, where nutrient turnover in soil-plant system is much higher. However, their combined use appeared promising in enhanced crop productivity besides improving soil fertility.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2011 ◽  
Vol 47 (2) ◽  
pp. 267-291 ◽  
Author(s):  
K. P. C. RAO ◽  
W. G. NDEGWA ◽  
K. KIZITO ◽  
A. OYOO

SUMMARYThis study examines farmers’ perceptions of short- and long-term variability in climate, their ability to discern trends in climate and how the perceived trends converge with actual weather observations in five districts of Eastern Province in Kenya where the climate is semi-arid with high intra- and inter-annual variability in rainfall. Field surveys to elicit farmers’ perceptions about climate variability and change were conducted in Machakos, Makueni, Kitui, Mwingi and Mutomo districts. Long-term rainfall records from five meteorological stations within a 10 km radius from the survey locations were obtained from the Kenya Meteorological Department and were analysed to compare with farmers’ observations. Farmers’ responses indicate that they are well aware of the general climate in their location, its variability, the probabilistic nature of the variability and the impacts of this variability on crop production. However, their ability to synthesize the knowledge they have gained from their observations and discern long-term trends in the probabilistic distribution of seasonal conditions is more subjective, mainly due to the compounding interactions between climate and other factors such as soil fertility, soil water and land use change that determine the climate's overall influence on crop productivity. There is a general tendency among the farmers to give greater weight to negative impacts leading to higher risk perception. In relation to long-term changes in the climate, farmer observations in our study that rainfall patterns are changing corroborated well with reported perceptions from other places across the African continent but were not supported by the observed trends in rainfall data from the five study locations. The main implication of our findings is the need to be aware of and account for the risk during the development and promotion of technologies involving significant investments by smallholder farmers and exercise caution in interpreting farmers’ perceptions about long-term climate variability and change.


2015 ◽  
Vol 3 (7) ◽  
pp. 4353-4389
Author(s):  
S. Quiroga ◽  
C. Suárez

Abstract. This paper examines the effects of climate change and drought on agricultural outputs in Spanish rural areas. By now the effects of drought as a response to climate change or policy restrictions have been analyzed through response functions considering direct effects on crop productivity and incomes. These changes also affect incomes distribution in the region and therefore modify the social structure. Here we consider this complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of inequalities measure to estimate the impact of climate change and drought on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptance of certain adaptation measures in a context of drought. We provide the empirical estimations for the marginal effects of the two considered impacts: farms' income average and social income distribution. In our estimates we consider crop productivity response to both bio-physical and socio-economic aspects to analyze long term implications on both competitiveness and social disparities. We find disparities in the adaptation priorities depending on the crop and the region analyzed.


Author(s):  
С.А. Запивалов

В Центральном районе Нечернозёмной зоны в 2018–2020 годах изучалось шесть систем ведения долголетнего сенокоса. В среднем за годы исследования применение техногенной системы позволило получить 3,86 т/га сухого вещества (СВ), применение интегрированной — 5,08 т/га СВ, техногенно-органической — 4,75–5,16 т/га СВ, техногенно-минеральной экстенсивной — 3,97–7,13 т/га СВ, техногенно-минеральной интенсивной — 6,60–8,85 т/га СВ, комбинированной — 7,03–7,25 т/га СВ. Существенное влияние на урожайность оказывали погодные условия. В засушливый год не был сформирован полноценный 2-й укос, что не позволило травостоям реализовать потенциал продуктивности. Более эффективно ограниченный запас влаги в почве использовался в техногенно-минеральной интенсивной системе. В условиях достаточной влагообеспеченности был получен полноценный второй укос, составляющий 30–50% сбора СВ за сезон. При улучшении условий увлажнения урожайность наиболее заметно повышалась при применении техногенно-минеральной интенсивной системы. Отмечена высокая экономическая эффективность применения всех изучаемых систем за счёт длительного использования травостоя. В зависимости от технологии рентабельность производства корма составляла 74–220%, себестоимость 1 корм. ед. — 3,12–5,75 руб. Для получения 65,2–88,0 ГДж, 5,1–6,8 тыс. корм. ед. и 781–1153 кг сырого протеина с 1 га на суходольных лугах Центрального района Нечернозёмной зоны рекомендуется применять техногенно-минеральную интенсивную систему ведения сенокоса. В случае недостаточной обеспеченности хозяйств материально-техническими ресурсами рекомендуются техногенная, интегрированная, техногенно-органическая и техногенно-минеральная экстенсивная системы ведения, позволяющие поддерживать высокое участие бобовых видов в травостое, что обеспечивает использование биологического источника азота и позволяет получить с 1 га сенокосных угодий 39,0–56,7 ГДж, 3,1–4,5 тыс. корм. ед. и 462–688 кг сырого протеина. Six management systems for long-term hayfields were tested in the Central Non-Chernozem region in 2018–2020. Without fertilization 3.86 t ha-1 of dry matter (DM) was obtained. Integrated farming resulted in 5.08 t DM ha-1, application of organic fertilizers — 4.75–5.16 t DM ha-1, extensive farming with mineral fertilization — 3.97–7.13 t DM ha-1, intensive farming with mineral fertilization — 6.60–8.85 t DM ha-1, combined management system — 7.03–7.25 t DM ha-1. Weather significantly affected crop productivity. Under drought grasses showed poor growth after the first cut leading to low yield. Intensive farming with mineral fertilization allowed more effective use of soil water resources. Sufficient water availability positively affected grass growth after the first cut resulting in 30–50% of DM yield for a season. The best performance was observed under intensive farming with mineral fertilization. All the management systems provided high economic efficiency due to a long-term cultivation of swards. Payback amounted to 74–220%, prime cost of 1 feed unit — 3.12–5.75 rubles. Intensive farming with mineral fertilization was recommended in order to obtain 65.2–88.0 GJ, 5.1–6.8 thousand feed units and 781–1153 kg of crude protein from 1 ha. In case of insufficient material and technical resources other above-mentioned systems can be used, except for the combined one. These management systems maintained high proportion of legumes in swards, an effective mean to obtain nitrogen via nitrogen-fixing bacteria. As a result, swards yielded 39.0–56.7 GJ, 3.1–4.5 thousand feed units and 462–688 kg of crude protein from 1 ha.


2019 ◽  
Vol 17 (1-2) ◽  
pp. 14-30
Author(s):  
M Jahangir Alam ◽  
S Ahmed ◽  
MK Islam ◽  
R Islam ◽  
M Islam

Cropping systems of Bangladesh are highly diverse and cultivation costs of puddled transplanted rice (PTR) are high. Therefore, an improved system is needed to address the issues, a field experiment was conducted during 2011-2013 to evaluate system intensification with varying degrees of cropping systems and residue retention. Four cropping systems (CSE) namely CSE1: T. boro rice-T. aman rice (control), CSE2: wheat-mungbean-T. aman rice (wheat and mungbean sown using a power tiller-operated seeder (PTOS) with full tillage in a single pass; puddled transplanted aman), CSE3: wheat-mungbean-dry seeded DS aman rice (DSR), and CSE4: wheat-mungbean-DS aman rice (all sown by PTOS with strip tillage) were compared. Two levels of aman rice residue retention (removed; partial retention i.e. 40 cm of standing stubble) were compared in sub plots. Grain yield was significantly higher (by 11%) when wheat was grown after DSR than PTR. Similarly, PTR and DSR (aman rice) produced statistically similar crop yields. Rice residue retention resulted a significantly higher (by 10%) wheat yield and a slightly increased (by 6%) mungbean yield than that of residues removed. The system productivity of CSE4 was significantly higher (by 10%) than CSE1 when averaged of the two years data. Partial aman residue retention gave significantly higher system yield than residue removal (by 0.6 t ha-1). After two years, no effect of CSE or partial aman residue retention was found on soil physical property (bulk density) of the top soil. Therefore, CSE4 along with residue retention would be more effective for sustainable crop production. The Agriculturists 2019; 17(1-2) 14-30


Horticulturae ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 47
Author(s):  
Huan Zhang ◽  
Markus Flury ◽  
Carol Miles ◽  
Hang Liu ◽  
Lisa DeVetter

Soil-biodegradable plastic mulches (BDMs) are made from biodegradable materials that can be bio-based, synthetic, or a blend of these two types of polymers, which are designed to degrade in soil through microbial activities. The purpose of BDMs is to reduce agricultural plastic waste by replacing polyethylene (PE) mulch, which is not biodegradable. Most studies have evaluated the breakdown of BDMs within annual production systems, but knowledge of BDM breakdown in perennial systems is limited. The objective of this study was to evaluate the deterioration and degradation of BDMs in a commercial red raspberry (Rubus ideaus L.) production system. Deterioration was low (≤11% percent soil exposure; PSE) for all mulches until October 2017 (five months after transplanting, MAT). By March 2018 (10 MAT), deterioration reached 91% for BDMs but remained low for PE mulch (4%). Mechanical strength also was lower for BDMs than PE mulch. In a soil burial test in the raspberry field, 91% of the BDM area remained after 18 months. In-soil BDM degradation was minimal, although the PSE was high. Since mulch is only applied once in a perennial crop production system, and the lifespan of the planting may be three or more years, it is worth exploring the long-term degradation of BDMs in perennial cropping systems across diverse environments.


2016 ◽  
Vol 11 (2) ◽  
pp. 85 ◽  
Author(s):  
Mariangela Diacono ◽  
Angelo Fiore ◽  
Roberta Farina ◽  
Stefano Canali ◽  
Claudia Di Bene ◽  
...  

Agricultural biodiversity and related agro-ecological measures could play a crucial role in the agro-ecosystems adaptation to climate changes, thus sustaining crop production. The objective of this study was to assess the suitability (and the best combination) of agro-ecological techniques as potential resilience strategies in organic horticultural systems in a Mediterranean environment. A long-term experimental device called MITIORG (<em>Long-term climatic change adaptation in organic farming: synergistic combination of hydraulic arrangement, crop rotations, agro-ecological service crops and agronomic techniques</em>) is set-up at Metaponto (MT), testing the following agro-ecological measures as well as organic and conservation farming <em>best practices</em>: i) hydraulic arrangement by a kind of ridge-furrow system; ii) cash crop rotations; iii) agro-ecological service crops (ASC) introduction; iv) ASC termination techniques (green manure vs roller crimper); and v) organic fertilisation. The research here reported was carried out during the 2014-2015 season in the MITIORG device, on a rotation of cauliflower (<em>Brassica oleracea</em> L.) and tomato (<em>Solanum lycopersicum</em> L.) crops. A detailed description of the scientific cognitive process that led to setup of the device, its components explanation, as well as preliminary yield results are reported. The outcomes suggest that organic vegetable cropping systems, designed following agro-ecological principles, are able to sustain yield of cash crops in rotation, in spite of changes in temperature and rainfall of the study site. Experimental data available in the next years will allow a deeper integrated analysis of the manifold effects of agro-ecological measures on horticultural systems.


2020 ◽  
Vol 12 (9) ◽  
pp. 3901 ◽  
Author(s):  
Amir Behzad Bazrgar ◽  
Aeryn Ng ◽  
Brent Coleman ◽  
Muhammad Waseem Ashiq ◽  
Andrew Gordon ◽  
...  

Enhancement of terrestrial carbon (C) sequestration on marginal lands in Canada using bioenergy crops has been proposed. However, factors influencing system-level C gain (SLCG) potentials of maturing bioenergy cropping systems, including belowground biomass C and soil organic carbon (SOC) accumulation, are not well documented. This study, therefore, quantified the long-term C sequestration potentials at the system-level in nine-year-old (2009–2018) woody (poplar clone 2293–29 (Populus spp.), hybrid willow clone SX-67 (Salix miyabeana)), and herbaceous (miscanthus (Miscanthus giganteus var. Nagara), switchgrass (Panicum virgatum)) bioenergy crop production systems on marginal lands in Southern Ontario, Canada. Results showed that woody cropping systems had significantly higher aboveground biomass C stock of 10.02 compared to 7.65 Mg C ha−1 in herbaceous cropping systems, although their belowground biomass C was not significantly different. Woody crops and switchgrass were able to increase SOC significantly over the tested period. However, when long term soil organic carbon (∆SOC) gains were compared, woody and herbaceous biomass crops gained 11.0 and 9.8 Mg C ha−1, respectively, which were not statistically different. Results also indicate a significantly higher total C pool [aboveground + belowground + soil organic carbon] in the willow (103 Mg ha−1) biomass system compared to other bioenergy crops. In the nine-year study period, woody crops had only 1.35 Mg C ha−1 more SLCG, suggesting that the influence of woody and herbaceous biomass crops on SLCG and ∆SOC sequestrations were similar. Further, among all tested biomass crops, willow had the highest annual SLCG of 1.66 Mg C ha−1 y−1.


Sign in / Sign up

Export Citation Format

Share Document