scholarly journals Mineralogy and diagenesis of Mars-analog paleosols from eastern Oregon, USA

2021 ◽  
Author(s):  
Adrian Broz ◽  
Joanna Clark ◽  
Brad Sutter ◽  
Doug Ming ◽  
Valerie Tu ◽  
...  

Ancient (4.1-3.7-billion-year-old) layered sedimentary rocks on Mars are rich in clay minerals which formed from aqueous alteration of the Martian surface. Many of these sedimentary rocks appear to be composed of vertical sequences of Fe/Mg clay minerals overlain by Al clay minerals that resemble paleosols (ancient, buried soils) from Earth. The types and properties of minerals in paleosols can be used to constrain the environmental conditions during formation to better understand weathering and diagenesis on Mars. This work examines the mineralogy and diagenetic alteration of volcaniclastic paleosols from the Eocene-Oligocene (43-28 Ma) Clarno and John Day Formations in eastern Oregon as a Mars-analog site. Here, paleosols rich in Al phyllosilicates and amorphous colloids overlie paleosols with Fe/Mg smectites that altogether span a sequence of ~500 individual profiles across hundreds of meters of vertical stratigraphy. Samples collected from three of these paleosol profiles were analyzed with visible/near-infrared (VNIR) spectroscopy, X-ray diffraction (XRD), and evolved gas analysis (EGA) configured to operate like the SAM-EGA instrument onboard Curiosity Mars Rover. Strongly crystalline Al/Fe dioctahedral phyllosilicates (montmorillonite and nontronite) were the major phases identified in all samples with all methods. Minor phases included the zeolite mineral clinoptilolite, as well as andesine, cristobalite, opal-CT and gypsum. Evolved H2O was detected in all samples and was consistent with adsorbed water and the dehydroxylation of a dioctahedral phyllosilicate, and differences in H2O evolutions between montmorillonite and nontronite were readily observable. Detections of hematite and zeolites suggested paleosols were affected by burial reddening and zeolitization, but absence of illite and chlorite suggest that potash metasomatism and other, more severe diagenetic alterations had not occurred. The high clay mineral content of the observed paleosols (up to 95 wt. %) may have minimized diagenetic alteration over geological time scales. Martian paleosols rich in Al and Fe smectites may have also resisted severe diagenetic alteration, which is favorable for future in-situ examination. Results from this work can help distinguish paleosols and weathering profiles from other types of sedimentary rocks in the geological record of Mars.

2021 ◽  
Author(s):  
Adrian Broz ◽  
Joanna Clark ◽  
Brad Sutter ◽  
Doug Ming ◽  
Briony Horgan ◽  
...  

Decades of space exploration have shown that surface environments on Mars were habitable billions of years ago. Ancient, buried surface environments, or paleosols, may have been preserved in the geological record on Mars, and are considered high-priority targets for biosignature investigation. Studies of paleosols on Earth that are compositionally similar to putative martian paleosols can provide a reference frame for constraining their organic preservation potential on Mars. However, terrestrial paleosols typically preserve only trace amounts of organic carbon, and it remains unclear whether the organic component of paleosols can be detected with Mars rover-like instruments. Furthermore, the study of terrestrial paleosols is complicated by diagenetic additions of organic carbon, which can confound interpretations of their organic preservation potential. The objectives of this study were a) to determine whether organic carbon in ~30-million-year-old Mars-analog paleosols can be detected with thermal and evolved gas analysis, and b) constrain the age of organic carbon using radiocarbon (14C) dating to identify late diagenetic additions of carbon. Al/ Fe smectite-rich paleosols from the Early Oligocene (33 Ma) John Day Formation in eastern Oregon were examined with a thermal and evolved gas analyzer configured to operate similarly to the Sample Analysis at Mars Evolved Gas Analysis (SAM-EGA) instrument onboard the Mars Science Laboratory Curiosity rover. All samples evolved CO2 with peaks at ~400 °C and ~700° C from the thermal decomposition of refractory organic carbon and small amounts of calcium carbonate, respectively. Evolutions of organic fragments co-occurred with evolutions of CO2 from organic carbon decomposition. Total organic carbon (TOC) ranged from 0.002 - 0.032 ± 0.006 wt. %. Like modern soils, the near-surface horizons of all paleosols had significantly higher TOC relative to subsurface layers. Radiocarbon dating of four samples revealed an organic carbon age ranging between ~6,200 – 14,500 years before present, suggesting there had been inputs of exogenous organic carbon during diagenesis. By contrast, refractory carbon detected with EGA and enrichment of TOC in near-surface horizons of all three buried profiles were consistent with the preservation of trace amounts of endogenous organic carbon. This work demonstrates that near-surface horizons of putative martian paleosols should be considered high priority locations for in-situ biosignature investigation and reveals challenges for examining organic matter preservation in terrestrial paleosols.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 475
Author(s):  
Joanna Clark ◽  
Brad Sutter ◽  
P. Douglas Archer ◽  
Douglas Ming ◽  
Elizabeth Rampe ◽  
...  

The Sample Analysis at Mars (SAM) instrument on the Curiosity rover has detected evidence of oxychlorine compounds (i.e., perchlorates and chlorates) in Gale crater, which has implications for past habitability, diagenesis, aqueous processes, interpretation of in situ organic analyses, understanding the martian chlorine cycle, and hazards and resources for future human exploration. Pure oxychlorines and mixtures of oxychlorines with Mars-analog phases have been analyzed for their oxygen (O2) and hydrogen chloride (HCl) releases on SAM laboratory analog instruments in order to constrain which phases are present in Gale crater. These studies demonstrated that oxychlorines evolve O2 releases with peaks between ~200 and 600 °C, although the thermal decomposition temperatures and the amount of evolved O2 decrease when iron phases are present in the sample. Mg and Fe oxychlorines decompose into oxides and release HCl between ~200 and 542 °C. Ca, Na, and K oxychlorines thermally decompose into chlorides and do not evolve HCl by themselves. However, the chlorides (original or from oxychlorine decomposition) can react with water-evolving phases (e.g., phyllosilicates) in the sample and evolve HCl within the temperature range of SAM (<~870 °C). These laboratory analog studies support that the SAM detection of oxychlorine phases is consistent with the presence of Mg, Ca, Na, and K perchlorate and/or chlorate along with possible contributions from adsorbed oxychlorines in Gale crater samples.


2014 ◽  
Vol 17 (3) ◽  
pp. 154 ◽  
Author(s):  
Arıtürk Cem ◽  
Ustalar Serpil ◽  
Toraman Fevzi ◽  
Ökten Murat ◽  
Güllü Ümit ◽  
...  

<p><strong>Introduction:</strong> Clear guidelines for red cell transfusion during cardiac surgery have not yet been established. The current focus on blood conservation during cardiac surgery has increased the urgency to determine the minimum safe hematocrit for these patients. The aim of this study was to determine whether monitoring of cerebral regional oxygen saturation (rSO<sub>2</sub>) via near-infrared spectrometry (NIRS) is effective for assessing the cerebral effects of severe dilutional anemia during elective coronary arterial bypass graft surgery (CABG).</p><p><strong>Methods:</strong> The prospective observational study involved patients who underwent cerebral rSO<sub>2</sub> monitoring by NIRS during elective isolated first-time CABG: an anemic group (<em>N</em>=15) (minimum Hemoglobin (Hb) N=15) (Hb &gt;8 g/dL during CPB). Mean arterial pressure (MAP), pump blood flow, blood lactate level, pCO<sub>2</sub>, pO<sub>2</sub> at five time points and cross-clamp time, extracorporeal circulation time were recorded for each patient. Group results statistically were compared.</p><p><strong>Results:</strong> The anemic group had significantly lower mean preoperative Hb than the control group (10.3 mg/dL versus 14.2 mg/dL; <em>P</em> = .001). The lowest Hb levels were observed in the hypothermic period of CPB in the anemic group. None of the controls exhibited a &gt;20% decrease in cerebral rSO<sub>2</sub>. Eleven (73.3%) of the anemic patients required an increase in pump blood flow to raise their cerebral rSO<sub>2</sub>.</p><p><strong>Conclusions:</strong> In this study, the changes in cerebral rSO<sub>2</sub> in the patients with low Hb were within acceptable limits, and this was in concordance with the blood lactate levels and blood-gas analysis. It can be suggested that NIRS monitoring of cerebral rSO<sub>2</sub> can assist in decision making related to blood transfusion and dilutional anemia during CPB.</p>


Author(s):  
Jako S. Eensalu ◽  
Kaia Tõnsuaadu ◽  
Jasper Adamson ◽  
Ilona Oja Acik ◽  
Malle Krunks

AbstractThermal decomposition of tris(O-ethyldithiocarbonato)-antimony(III) (1), a precursor for Sb2S3 thin films synthesized from an acidified aqueous solution of SbCl3 and KS2COCH2CH3, was monitored by simultaneous thermogravimetry, differential thermal analysis and evolved gas analysis via mass spectroscopy (TG/DTA-EGA-MS) measurements in dynamic Ar, and synthetic air atmospheres. 1 was identified by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) measurements, and quantified by NMR and elemental analysis. Solid intermediates and final decomposition products of 1 prepared in both atmospheres were determined by X-ray diffraction (XRD), Raman spectroscopy, and FTIR. 1 is a complex compound, where Sb is coordinated by three ethyldithiocarbonate ligands via the S atoms. The thermal degradation of 1 in Ar consists of three mass loss steps, and four mass loss steps in synthetic air. The total mass losses are 100% at 800 °C in Ar, and 66.8% at 600 °C in synthetic air, where the final product is Sb2O4. 1 melts at 85 °C, and decomposes at 90–170 °C into mainly Sb2S3, as confirmed by Raman, and an impurity phase consisting mostly of CSO 2 2− ligands. The solid-phase mineralizes fully at ≈240 °C, which permits Sb2S3 to crystallize at around 250 °C in both atmospheres. The gaseous species evolved include CS2, C2H5OH, CO, CO2, COS, H2O, SO2, and minor quantities of C2H5SH, (C2H5)2S, (C2H5)2O, and (S2COCH2CH3)2. The thermal decomposition mechanism of 1 is described with chemical reactions based on EGA-MS and solid intermediate decomposition product analysis.


1980 ◽  
Vol 53 (3) ◽  
pp. 437-511 ◽  
Author(s):  
D. W. Brazier

Abstract An attempt has been made to review the development of thermoanalytical procedures as they have been applied to elastomers and elastomer systems over the past 10 years. For all rubber industry products, temperature and its effects, either alone or in conjunction with the chemical environment, play an important role from the production stage through to the final failure of the product in the field. It is thus not surprising that thermal analysis, in which temperature is the prime variable, has found such diverse applications in elastomer studies. The identification and quantitative analysis of rubber formulations have received most attention. Such formulations produce characteristic “fingerprints” when studied in DTA, DSC, TG, or TMA. In DSC, the determination of the glass transition characteristics, the observation and determination of crystallinity, the detection of cyclization reactions, and the monitoring of thermal and oxidative degradation characteristics can all be observed in a single experiment covering the temperature range from −150 to +600°C. At normal heating rates, e.g., 20°C/min, such information is available in 40 min. TG/DTG analysis can yield the elastomer or elastomers content, oil and plasticizer, carbon black (level and often type), and inorganic ash in less than 60 min. Processing and curing can also be studied. Blend compatibility can be assessed on the basis of both Tg and crystallinity measurements and the data used to determine optimum mixing times. Sulfur vulcanization and peroxide curing of elastomers is readily monitored by DSC and can be used for confirmation analysis of the presence of curatives. Limitations in such analysis exist, but as understanding and ability to interpret cure exotherms increase, valuable information about the mechanism and the nature of the cured network will be obtained. The testing of rubber compounds involves many hours of labor by current procedures. The rapidity of thermal analysis promises to offer some relief. In addition to DSC and TG, TMA, a relatively new technique, offers a rapid approach to low-temperature testing. Dynamic mechanical analysis (DMA) offers a rapid route to determining dynamic properties, but as yet, relatively little has been published on the application of this new technique to elastomers. As environmental concern increases, techniques such as evolved gas analysis (EGA) and combined techniques such as TG/gas chromatography are predicted to play an important role. As for the future, it is readily apparent that the principles of the methods have been established and, in several cases, it now remains to reduce them to a practical level. In some areas, such as vulcanization studies, much remains to be undertaken to improve our interpretive skills. Although there is some indication that certain industries have produced “in-house” standards for the analysis of rubber compounds by DSC and TG/DTG, it will only be when national and international standards organizations study and produce standard procedures, that the techniques will be generally adopted. Maurer's prediction in 1969 of increased applications of DTA and TG in elastomer studies has undoubtedly proved correct, and with the proliferation of reliable commercial instrumentation, significant developments can be anticipated in the next decade.


2010 ◽  
Vol 45 (4) ◽  
pp. 241-273 ◽  
Author(s):  
S. Materazzi ◽  
S. Vecchio

Sign in / Sign up

Export Citation Format

Share Document