Correlating Indoor and Outdoor Temperature and Humidity in a Sample of Buildings in Tropical Climates

2021 ◽  
Author(s):  
Jin Pan ◽  
Julian Tang ◽  
Miguela Caniza ◽  
Jean-Michel Heraud ◽  
Evelyn Koay ◽  
...  

The incidence of several respiratory viral infections has been shown to be related to climate. Because humans spend most of their time indoors, measures of indoor climate, rather than outdoor climate, may be better predictors of disease incidence and transmission. Therefore, understanding the relationship between indoor and outdoor climate will help illuminate their influence on the seasonality of diseases caused by respiratory viruses. Indoor-outdoor relationships between temperature and humidity have been documented in temperate regions, but little information is available for tropical regions, where seasonal patterns of respiratory viral diseases differ. We have examined indoor-outdoor correlations of temperature, relative humidity (RH), and absolute humidity (AH) over a 1-year period in each of seven tropical cities. Across all cities, the average monthly indoor temperature was 25±3°C (mean ± standard deviation) with a range of 20–30°C. The average monthly indoor RH was 669% with a range of 50–78%, and the average monthly indoor AH was 153 g/m3 with a range of 10–23 g/m3. Indoor AH and RH were linearly correlated with outdoor AH when the air-conditioning (AC) was off, suggesting that outdoor AH may be a good proxy of indoor humidity in the absence of AC. All indoor measurements were more strongly correlated with outdoor measurements as distance from the equator increased. Such correlations were weaker during the wet season, especially when AC was in operation. These correlations will provide insight for assessing the seasonality of respiratory viral infections using outdoor climate data, which is more widely available than indoor data, even though transmission of these diseases mainly occurs indoors.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 254
Author(s):  
Waraporn Rattanongphisat ◽  
Anantachai Suwannakom

The air conditioned auditorium classroom was monitored for energy consumption by a monitoring platform. One year collected data from energy consumption and indoor climate monitoring systems and outdoor climate data in Phitsanulok province, Thailand, where its climate classified as the tropics, was employed to determine their relation by regression analysis. The analysis of climate data showed that the outdoor temperature above 26 oC was accounted for 70% of the year this emphasizes on cooling requirement. Furthermore, the hourly cooling energy consumption ranged from 8.1 to 10.3 kWh for indoor air temperature between 20 oC and 32 oC.  The higher outdoor temperature causes the greater cooling energy consumption. The correlation between outdoor temperature and cooling energy consumption with linear regression showed the correlation coefficient of 0.38 while the correlation between temperature difference and enthalpy difference of the outdoor and indoor found the correlation coefficient of 0.71. This pointed out that the outdoor tropical climate highly affected to the cooling energy demand.


2019 ◽  
Vol 6 (3) ◽  
pp. 180695 ◽  
Author(s):  
Michael G. Just ◽  
Lauren M. Nichols ◽  
Robert R. Dunn

Human engineering of the outdoors led to the development of the indoor niche, including home construction. However, it is unlikely that domicile construction mechanics are under direct selection for humans. Nonetheless, our preferences within indoor environments are, or once were, consequential to our fitness. The research of human homes does not usually consider human evolution, and, therefore, we are without previous predictions about indoor climate preference. We worked with citizen scientists to collect indoor climate data from homes ( n = 37) across the USA. We then compared these data to recent global terrestrial climate data (0.5° grid cells, n = 67 420) using a climate dissimilarity index. We also compared some climate-related physiological parameters (e.g. thermoneutral zone (TNZ)) between humans and a selection of non-human primates. On average, our study homes were most similar in climate to the outdoor conditions of west central Kenya. We found that the indoor climates of our study homes largely matched the TNZ of humans and other primates. Overall, we identified the geographical distribution of the global outdoor climate that is most similar to the interiors of our study homes and summarized study home indoor climate preferences.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012247
Author(s):  
Ricardo F Rupp ◽  
Gianluca Trotta ◽  
Jørn Toftum ◽  
Rune K Andersen

Abstract High-quality data on indoor climate and energy collected in buildings is required to deepen our understanding of building performance. The aim of this work was to investigate the relationship between the indoor and outdoor climate in Danish residential buildings. Field data was collected in 45 apartments from April 2019 to November 2020. Internet of things (IoT) devices were installed to record the temperature, relative humidity and CO2 concentration in the central corridor of each apartment. High CO2 concentration (above 1,000ppm) and overheating were observed in the apartments. The changeover between the heating mode and the free running mode occurred between 11.1 to 13.6°C of outdoor air temperature. The temperature setpoints of the heating systems were around 20.6-22.3°C, which could be useful values to feed building simulations in order to achieve more realistic predictions of indoor climate and energy. The results of this study improve our understanding of indoor environmental quality in residential buildings at a national level.


2020 ◽  
Vol 7 (1) ◽  
pp. 83-101 ◽  
Author(s):  
Miyu Moriyama ◽  
Walter J. Hugentobler ◽  
Akiko Iwasaki

The seasonal cycle of respiratory viral diseases has been widely recognized for thousands of years, as annual epidemics of the common cold and influenza disease hit the human population like clockwork in the winter season in temperate regions. Moreover, epidemics caused by viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and the newly emerging SARS-CoV-2 occur during the winter months. The mechanisms underlying the seasonal nature of respiratory viral infections have been examined and debated for many years. The two major contributing factors are the changes in environmental parameters and human behavior. Studies have revealed the effect of temperature and humidity on respiratory virus stability and transmission rates. More recent research highlights the importance of the environmental factors, especially temperature and humidity, in modulating host intrinsic, innate, and adaptive immune responses to viral infections in the respiratory tract. Here we review evidence of how outdoor and indoor climates are linked to the seasonality of viral respiratory infections. We further discuss determinants of host response in the seasonality of respiratory viruses by highlighting recent studies in the field.


2011 ◽  
Vol 31 (4) ◽  
pp. 341-356 ◽  
Author(s):  
Virginia Amanatidou ◽  
Apostolos Zaravinos ◽  
Stavros Apostolakis ◽  
Demetrios A. Spandidos

2017 ◽  
Vol 96 (4) ◽  
pp. 22-27 ◽  
Author(s):  
I. V. Babachenko ◽  
◽  
L. A. Alekseeva ◽  
O. M. Ibragimova ◽  
Т. V. Bessonova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document