Microstructural and Mechanical Properties Changes of Silicon Nitride Based Ceramic Using Post-Sintering Heat Treatment

2012 ◽  
Vol 727-728 ◽  
pp. 1085-1091
Author(s):  
José Vitor C. Souza ◽  
O.M.M. Silva ◽  
E.A. Raymundo ◽  
João Paulo Barros Machado

Si3N4based ceramics are widely researched because of their low density, high hardness, toughness and wear resistance. Post-sintering heat treatments can enhance their properties. Thus, the objective of the present paper was the development of a Si3N4based ceramic, suitable for structural applications, by sintering in nitrogen gas pressure, using AlN, Al2O3, and Y2O3as additives and post-sintering heat treatment. The green bodies were fabricated by uniaxial pressing at 80 MPa with subsequent isostatic pressing at 300 MPa. The samples were sintered at 1900°C for 1 h under N2gas pressure of 0.1 MPa. Post-sintering heat treatment was performed at 1500°C for 48 h under N2gas pressure of 1.0 MPa. From the results, it was observed that after post-sintering heat treatment there was a reduction of α-SiAlON phase and increase of β-Si3N4phase, with consequent changing in grain size, decrease of fracture toughness and increase of the Vickers hardness.

2018 ◽  
Vol 12 (4) ◽  
pp. 4180-4190
Author(s):  
Ananda Hegde ◽  
Sathyashankara Sharma ◽  
Gowri Shankar M. C

When the ductile iron which is also known as Spheroidal Graphite (SG) iron, is subjected to austempering heat treatment, the material is known as austempered ductile iron (ADI). This material has good mechanical properties and has various applications in different fields. This revolutionary material with its excellent combination of strength, ductility, toughness and wear resistance has the potential to replace some of the commonly used conventional materials such as steel, aluminium and other light weight alloys as it offers production advantage as well. One of the problems encountered during manufacturing is machining of ADI parts owing to its high hardness and wear resistance. Many researchers over a period of time have reported the machinability aspects of the ADI. This paper presents a review on the developments made on the machinability aspects of ADI along with other mechanical properties.


2021 ◽  
Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.


Alloy Digest ◽  
1980 ◽  
Vol 29 (6) ◽  

Abstract AL Tech 609 is a silicon type of shock-resisting tool steel containing small additions of chromium, molybdenum and vanadium to increase hardenability, decrease grain size and improve mechanical properties. Because of its high elastic limit and fair ductility at comparatively high hardness, it has the ability to withstand heavy shocks before bending or breaking. Its many uses include shear blades, heavy-duty punches, pneumatic tools for severe service and machine parts subject to shock. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-363. Producer or source: AL Tech Specialty Steel Corporation.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1231
Author(s):  
Ye Eun Jeong ◽  
Jun Yeop Lee ◽  
Eun Kyung Lee ◽  
Do Sik Shim

In this study, the Fe-8Cr-3V-2Mo-2W tool steel powder was deposited on the SCM420 substrate through the directed energy deposition (DED) process. This study focuses on the mechanical properties of the deposited Fe-8Cr-3V-2Mo-2W and the effect of heat treatment on it. The changes in the microstructural characteristics of the deposited region due to heat treatment after deposition were observed. The influence of heat treatment on the mechanical properties was then analyzed accordingly and hence, the hardness, wear, impact and tensile tests were conducted on the deposited material. These properties were compared with those of the commercial tool steel powder M2-deposited material and the carburized specimen. In the deposited Fe-8Cr-3V-2Mo-2W layer, an increased martensite phase fraction was obtained through post-heat treatment and the amount of precipitated carbides was also increased. This increased the hardness from 48 to 62 HRc after heat treatment and the wear resistance was significantly improved as well. The amount of impact energy absorbed decreased from 11 J before heat treatment to 6 J after heat treatment, but the tensile strength significantly increased from 607 to 922 MPa. When compared with the M2-deposited surface, the Fe-8Cr-3V-2Mo-2W deposits had 3% lower surface hardness and 76% lower fracture toughness but exhibited 56% higher tensile strength. When compared with the carburized SCM420, the Fe-8Cr-3V-2Mo-2W deposits exhibited 3% higher surface hardness and wear resistance, 90% lower fracture toughness and 5% higher tensile strength. This study shows that surface hardening through DED can exhibit similar or superior mechanical properties when compared to carburizing.


Alloy Digest ◽  
1974 ◽  
Vol 23 (3) ◽  

Abstract ALMANITE W comprises a series of three types of austenitic-martensitic white irons characterized by high hardness and relatively good impact strength. Type W1 has a pearlitic matrix. Type W2 has a martensitic matrix, Type W4 is highly alloyed to provide an austenitic matrix in the as-cast condition which may be further modified to give a martensitic matrix by heat treatment or by refrigeration. This datasheet provides information on composition, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-42. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1968 ◽  
Vol 17 (10) ◽  

Abstract HOWMET No. 3 is a cobalt-base alloy having high hardness and compressive strength, high heat and corrosion resistance, along with excellent abrasion and wear resistance. It is recommended for bushings, scrapers, valve parts, and other machinery components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Co-56. Producer or source: Howmet Corporation Metal Products Division.


Alloy Digest ◽  
1962 ◽  
Vol 11 (9) ◽  

Abstract DOUBLE SEVEN is an air hardening high-carbon high-chromium tool and die steel having high hardness and wear resistance. It is recommended for shear blades, cold working tools, and heavy duty dies. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-124. Producer or source: Edgar Allen & Company Ltd, Imperial Steel Works.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract DEWARD is an oil-hardening, non-deforming, manganese die steel that is characterized by uniformity, good machinability and satisfactory performance in service. Its composition permits a relatively low hardening temperature to give minimum distortion after heat treatment and little danger of cracking. It has good wear resistance and gives excellent results when used for all kinds of intricate tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-310. Producer or source: AL Tech Specialty Steel Corporation.


Sign in / Sign up

Export Citation Format

Share Document