scholarly journals Action Planning and Situation Analysis of Repurposing Battery Recovery and Application in China (中國汰役電池回收利用的推動現況與分析)

2019 ◽  
Author(s):  
Hsien-Ching Chung ◽  
Yaw-Chung Cheng

Due to the vigorous promotion of commercialization and the popularization of electric vehicles in China, the elimination of power batteries has gradually increased, causing environmental protection threats and waste of resources. Therefore, recycling and utilization of such batteries have been actively promoted in recent years. At present, the “Interim Measures for the Management of Recovery and Utilization of New Energy Vehicle Power Battery,” as well as related regulations and standards have been announced. The power battery traceability management platform has been established and promoted, so that the being counseled companies have cooperated to perform these policies. This article is mainly to explain the promotion system and current situation of recovery and reuse of repurposing batteries, including coding principles, traceability management system, manufacturing factory guidelines, dismantling process guidelines, residual energy measurement, etc., as well as analyze the promotion situation and policy in China. Currently, the industry and business of electric vehicles are still in the early stage of promotion. The main products include electric buses, electric motorcycles, and electric scooters. The relative policy about power battery recycling is under development. The policy, code, and standard in China and other countries can be used as references for promoting the recovery and reuse of repurposing batteries in the future in Taiwan. (This article has been published in the Journal of Taiwan Energy 6 (2019) 425-451. Link: https://km.twenergy.org.tw/Publication/thesis_more?id=234 )-----近年來中國大力推動電動車輛的商業化與普及化,導致汰役電池逐漸增加,造成環保威脅與資源浪費的問題。因此積極推動汰役電池的回收與利用。目前已經公布「新能源汽車動力蓄電池回收利用管理暫行辦法」,及相關法規與標準,並建立與推廣動力電池溯源管理平台,同時輔導產業界配合執行。本文主要在說明中國汰役電池回收利用的推動制度與現況,包括編碼規則、溯源管理、設廠規範、拆解規範、餘能量測等,並分析其政府單位與民間企業的推動情形,同時檢討我國相關發展狀況。我國目前電動車輛尚在初期推廣階段,目前主要為電動巴士與電動機車,相關回收政策仍在研擬中,因此中國與國際已有的法規、標準與做法,值得我們做為未來推動汰役電池回收再利用的參考。(本文已發表於台灣能源期刊 6 (2019) 425-451, 連結: https://km.twenergy.org.tw/Publication/thesis_more?id=234 )

Author(s):  
Menghan TAO ◽  
Ning XIAO ◽  
Xingfu ZHAO ◽  
Wenbin LIU

New energy vehicles(NEV) as a new thing for sustainable development, in China, on the one hand has faced the rapid expansion of the market; the other hand, for the new NEV users, the current NEVs cannot keep up with the degree of innovation. This paper demonstrates the reasons for the existence of this systematic challenge, and puts forward the method of UX research which is different from the traditional petrol vehicles research in the early stage of development, which studies from the user's essence level, to form the innovative product programs which meet the needs of users and being real attractive.


2020 ◽  
Vol 120 (6) ◽  
pp. 1059-1083 ◽  
Author(s):  
Peiqi Ding ◽  
Zhiying Zhao ◽  
Xiang Li

PurposeThe power battery is the core of a new energy vehicle and plays a vital role in the rise of the new energy vehicle industry. As the number of waste batteries increases, firms involved in the industry need to properly dispose them, but what party is responsible remains unclear. To reduce environmental impacts, governments introduce two subsidy policies, i.e. collection subsidies, which are provided to the collecting firms, and dismantling subsidies, which are provided to the dismantling firms.Design/methodology/approachBased on the different characteristics of the subsidies, we develop a stylized model to examine the collection strategies and the preferences over the subsidies.FindingsWe derive several insights from analysis. First, the collection strategies depend on the fixed collection cost. Second, the key factor determining the firm's subsidy preference is the efficiency of dismantling. Finally, if the primary target is the collection rate, governments prefer to provide collection subsidies. If consider the environmental impact, the choice of subsidies has to do with the efficiency of dismantling. Moreover, from a social welfare perspective, the raw material cost and the efficiency of dismantling are core indicators of decision.Originality/valueThis work develops the first analytical model to study two power battery subsidies and investigate the optimal collecting strategies and subsidy preferences. The insights are compelling not only for the manufacturer and the third party but also for policymakers.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/IMDS-08-2019-0450


Author(s):  
Yuan Xu ◽  
Huazhang Wang ◽  
Jiacheng Li

The insulation performance of new energy vehicles is an important factor in the normal operation of vehicles. This paper designs a voltage injection-type insulation detection based on the traditional detection.Based on the python language combined with the library provided by NI-visa, it can achieve high integration and meet the national GB/T 18384.1-2015 standard. Experimental results show that the insulation detection system can accurately test the insulation performance of new energy vehicles and meet the new energy vehicle offline detection standards.


2019 ◽  
Vol 16 (08) ◽  
pp. 1950042
Author(s):  
Zhuhai Tao ◽  
Yang Jialin ◽  
Zhang Xianglei ◽  
Zhang Bing

Based on the crash test of new energy vehicles, the mechanical response data of power batteries during the collision process were collected, and the average impact strength curve of power batteries of typical new energy vehicles in China was obtained. The average impact strength curve was mathematically processed to obtain the impact strength characteristic value and tolerance by using the equivalent trapezoidal wave and the least square method, thereby determining the test conditions of the dynamic strength of the domestic new energy vehicle power battery. The differences are analyzed by comparing with ISO 12405-3 test conditions, which provides an important reference for the revision of power battery test standards in the future.


2020 ◽  
Vol 165 ◽  
pp. 01033
Author(s):  
Wang Jia ◽  
Li Yuke ◽  
Pan Wei ◽  
Li Zhenbiao

With the rapid increase in the promotion and application volume of new energy vehicles in China, the number of end-of-life new energy vehicles will increase rapidly in the future. Moreover, it brings difficulties to the dismantling of new energy vehicles because of the flammability and explosiveness characteristics of the power battery in new energy vehicles. This paper analyzes the dismantling technology of end-of-life new energy vehicles in China and abroad, and forecasts the inventory of new energy vehicles and the number of end-of-life new energy vehicle in the future, which has important reference significance for the future development of China’s industry. Finally, the paper puts forward suggestions to promote the development of the industry.


2011 ◽  
Vol 328-330 ◽  
pp. 614-618
Author(s):  
Li Ya Lv ◽  
Yong Jun Min

A communication and data collection device was designed based on GPIB protocol, with the design of PC control and automatic measurement software, which can complete programmable electronic load control and ambient temperature data acquision, implementation of new energy vehicles for the automatic measurement of battery pack and Data records, simplifying test system design. The results show that the system operation and reliable performance, advanced features, can realize the new energy vehicle power battery pack automated testing of complex working conditions.


2013 ◽  
Vol 448-453 ◽  
pp. 3194-3200
Author(s):  
Zi Long Cai ◽  
Hong Chun Shu

Because of the energy crisis and environment deterioration, there is a general consensus about the development of new energy vehicle especially electric vehicle in the world. The development of electric vehicles has brought new challenges to the distribution network. The charging strategy, the location planning of electric vehicle charging stations and sizing, the coordination planning between electric vehicle and the distribution grid depends on the future development scale electric vehicles and charging load forecasting. Because there is a certain distance from commercial operation in china, the prediction theory and method of the electric vehicle development scale and charging load are not mature. By using the method of artificial neural network to establish the development scale and charging load forecasting model of electric vehicle. The model is proved its correctness through an example of the electric vehicle scale and charging load forecasting of Kunming, a big city in West China. The paper provides a new way for future development scale and charging load forecasting to electric vehicle of China.


Sign in / Sign up

Export Citation Format

Share Document