scholarly journals Communication deficits in a case of 22q11.23 Duplication Syndrome with a deletion in 7q31 encompassing FOXP2

2021 ◽  
Author(s):  
Verónica Moreno Campos ◽  
Antonio Benítez-Burraco

Copy number variants (CNVs) found in individuals with communication deficits provide a valuable window to the genetic causes of problems with language and more generally, to the genetic foundation of the human-specific ability to learn and use languages. In this paper, we report in detail on the language and communication problems of a patient with a microduplication in 22q11.23 and a microdeletion in 7q31 encompassing FOXP2. The proband exhibits severe speech problems, moderate comprehension deficits, and quite preserved pragmatic abilities, using gestures to compensate most of her expressive problems. This profile is compatible with the deficits found in patients with similar CNVs, particularly, with people bearing microdeletions in 7q31.

2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


2020 ◽  
Author(s):  
◽  
Evelina Siavrienė

A Molecular and Functional Evaluation of Coding and Non-Coding Genome Sequence Variants and Copy Number Variants


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 146-146
Author(s):  
D. M. Bickhart ◽  
L. Xu ◽  
J. L. Hutchison ◽  
J. B. Cole ◽  
D. J. Null ◽  
...  

2021 ◽  
Vol 132 ◽  
pp. S287-S288
Author(s):  
Jianling Ji ◽  
Ryan Schmidt ◽  
Westley Sherman ◽  
Ryan Peralta ◽  
Megan Roytman ◽  
...  

Author(s):  
Elmo Christian Saarentaus ◽  
Aki Samuli Havulinna ◽  
Nina Mars ◽  
Ari Ahola-Olli ◽  
Tuomo Tapio Johannes Kiiskinen ◽  
...  

AbstractCopy number variants (CNVs) are associated with syndromic and severe neurological and psychiatric disorders (SNPDs), such as intellectual disability, epilepsy, schizophrenia, and bipolar disorder. Although considered high-impact, CNVs are also observed in the general population. This presents a diagnostic challenge in evaluating their clinical significance. To estimate the phenotypic differences between CNV carriers and non-carriers regarding general health and well-being, we compared the impact of SNPD-associated CNVs on health, cognition, and socioeconomic phenotypes to the impact of three genome-wide polygenic risk score (PRS) in two Finnish cohorts (FINRISK, n = 23,053 and NFBC1966, n = 4895). The focus was on CNV carriers and PRS extremes who do not have an SNPD diagnosis. We identified high-risk CNVs (DECIPHER CNVs, risk gene deletions, or large [>1 Mb] CNVs) in 744 study participants (2.66%), 36 (4.8%) of whom had a diagnosed SNPD. In the remaining 708 unaffected carriers, we observed lower educational attainment (EA; OR = 0.77 [95% CI 0.66–0.89]) and lower household income (OR = 0.77 [0.66–0.89]). Income-associated CNVs also lowered household income (OR = 0.50 [0.38–0.66]), and CNVs with medical consequences lowered subjective health (OR = 0.48 [0.32–0.72]). The impact of PRSs was broader. At the lowest extreme of PRS for EA, we observed lower EA (OR = 0.31 [0.26–0.37]), lower-income (OR = 0.66 [0.57–0.77]), lower subjective health (OR = 0.72 [0.61–0.83]), and increased mortality (Cox’s HR = 1.55 [1.21–1.98]). PRS for intelligence had a similar impact, whereas PRS for schizophrenia did not affect these traits. We conclude that the majority of working-age individuals carrying high-risk CNVs without SNPD diagnosis have a modest impact on morbidity and mortality, as well as the limited impact on income and educational attainment, compared to individuals at the extreme end of common genetic variation. Our findings highlight that the contribution of traditional high-risk variants such as CNVs should be analyzed in a broader genetic context, rather than evaluated in isolation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
PingHsun Hsieh ◽  
Vy Dang ◽  
Mitchell R. Vollger ◽  
Yafei Mao ◽  
Tzu-Hsueh Huang ◽  
...  

AbstractTRP channel-associated factor 1/2 (TCAF1/TCAF2) proteins antagonistically regulate the cold-sensor protein TRPM8 in multiple human tissues. Understanding their significance has been complicated given the locus spans a gap-ridden region with complex segmental duplications in GRCh38. Using long-read sequencing, we sequence-resolve the locus, annotate full-length TCAF models in primate genomes, and show substantial human-specific TCAF copy number variation. We identify two human super haplogroups, H4 and H5, and establish that TCAF duplications originated ~1.7 million years ago but diversified only in Homo sapiens by recurrent structural mutations. Conversely, in all archaic-hominin samples the fixation for a specific H4 haplotype without duplication is likely due to positive selection. Here, our results of TCAF copy number expansion, selection signals in hominins, and differential TCAF2 expression between haplogroups and high TCAF2 and TRPM8 expression in liver and prostate in modern-day humans imply TCAF diversification among hominins potentially in response to cold or dietary adaptations.


Sign in / Sign up

Export Citation Format

Share Document