Stressful Life Events and Self-Control: Testing Gene x Environment Interaction with a Polygenic Approach

2019 ◽  
Author(s):  
Yayouk Willems ◽  
Jouke-Jan Hottenga ◽  
Lannie Ligthart ◽  
Gonneke WIllemsen ◽  
Dorret Boomsma ◽  
...  

Background: Ill decisions and reckless behaviors due to low self-control are concurrently and longitudinally costly, and revealing possible factors contributing to individual differences in self-control is necessary. It is hypothesized that genetically sensitivity interacts with life stressors in the prediction of the development of low self-control (gene environment interaction), yet attempts to test this hypothesis mostly concern candidate gene studies yielding inconclusive results. The goal of this research was to bring findings from large scale gene identification studies into the developmental psychology framework, taking the polygenic nature of complex traits into account. Methods: Using data of a large population-based twin sample, we tested whether polygenic risk scores for self-control problems – based on the most recent ADHD GWAS – predict self-control problems in adults, and whether this polygenic risk scores interact with the presence of environmental stressors. Results: While polygenic scores and life stressors significantly predicted low self-control, we did not find a significant interaction effect. Conclusions: Empirically, finding statistical evidence for this hypothesis remains a challenge, and more research is needed to investigate how to better detect G x E.

2015 ◽  
Vol 46 (4) ◽  
pp. 759-770 ◽  
Author(s):  
N. Mullins ◽  
R. A. Power ◽  
H. L. Fisher ◽  
K. B. Hanscombe ◽  
J. Euesden ◽  
...  

BackgroundMajor depressive disorder (MDD) is a common and disabling condition with well-established heritability and environmental risk factors. Gene–environment interaction studies in MDD have typically investigated candidate genes, though the disorder is known to be highly polygenic. This study aims to test for interaction between polygenic risk and stressful life events (SLEs) or childhood trauma (CT) in the aetiology of MDD.MethodThe RADIANT UK sample consists of 1605 MDD cases and 1064 controls with SLE data, and a subset of 240 cases and 272 controls with CT data. Polygenic risk scores (PRS) were constructed using results from a mega-analysis on MDD by the Psychiatric Genomics Consortium. PRS and environmental factors were tested for association with case/control status and for interaction between them.ResultsPRS significantly predicted depression, explaining 1.1% of variance in phenotype (p= 1.9 × 10−6). SLEs and CT were also associated with MDD status (p= 2.19 × 10−4andp= 5.12 × 10−20, respectively). No interactions were found between PRS and SLEs. Significant PRSxCT interactions were found (p= 0.002), but showed an inverse association with MDD status, as cases who experienced more severe CT tended to have a lower PRS than other cases or controls. This relationship between PRS and CT was not observed in independent replication samples.ConclusionsCT is a strong risk factor for MDD but may have greater effect in individuals with lower genetic liability for the disorder. Including environmental risk along with genetics is important in studying the aetiology of MDD and PRS provide a useful approach to investigating gene–environment interactions in complex traits.


2019 ◽  
Author(s):  
Catherine M. Olsen ◽  
Nirmala Pandeya ◽  
Matthew H. Law ◽  
Stuart MacGregor ◽  
Mark M. Iles ◽  
...  

ABSTRACTMelanoma develops as the result of complex interactions between sun exposure and genetic factors. Data on the relationship between sunlight and melanoma from prospective studies are scant, and the combination of ultraviolet exposure data collected before melanoma diagnosis and genetic information is rarer still. We aimed to quantify the association between ambient and personal UV exposure in relation to risk of incident melanoma (invasive; invasive+in situ) in a large population-based prospective study of men and women (n=38,833) residing in a high ambient UV setting, and to examine potential gene-environment interactions. During a median follow-up time of 4.4 years, 782 (1.5%) participants developed cutaneous melanoma (316 invasive, 466 in situ). Country of birth, age at migration and sunburns during all periods of life were significantly associated with melanoma risk. Histories of keratinocyte cancer and of other actinic lesions were both strongly associated with melanoma risk. An interaction with polygenic risk is possible; among people at low risk, markers of cumulative sun exposure were associated with melanoma. In contrast, among people at high polygenic risk, markers of high-level early life ambient exposure were associated with melanoma. Polygenic risk scores can assist in identifying individuals for whom sunlight exposure is most relevant.


2018 ◽  
Vol 29 (5) ◽  
pp. 791-803 ◽  
Author(s):  
J. Wertz ◽  
A. Caspi ◽  
D. W. Belsky ◽  
A. L. Beckley ◽  
L. Arseneault ◽  
...  

Drawing on psychological and sociological theories of crime causation, we tested the hypothesis that genetic risk for low educational attainment (assessed via a genome-wide polygenic score) is associated with criminal offending. We further tested hypotheses of how polygenic risk relates to the development of antisocial behavior from childhood through adulthood. Across the Dunedin and Environmental Risk (E-Risk) birth cohorts of individuals growing up 20 years and 20,000 kilometers apart, education polygenic scores predicted risk of a criminal record with modest effects. Polygenic risk manifested during primary schooling in lower cognitive abilities, lower self-control, academic difficulties, and truancy, and it was associated with a life-course-persistent pattern of antisocial behavior that onsets in childhood and persists into adulthood. Crime is central in the nature-nurture debate, and findings reported here demonstrate how molecular-genetic discoveries can be incorporated into established theories of antisocial behavior. They also suggest that improving school experiences might prevent genetic influences on crime from unfolding.


2014 ◽  
Vol 205 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wouter J. Peyrot ◽  
Yuri Milaneschi ◽  
Abdel Abdellaoui ◽  
Patrick F. Sullivan ◽  
Jouke J. Hottenga ◽  
...  

BackgroundResearch on gene×environment interaction in major depressive disorder (MDD) has thus far primarily focused on candidate genes, although genetic effects are known to be polygenic.AimsTo test whether the effect of polygenic risk scores on MDD is moderated by childhood trauma.MethodThe study sample consisted of 1645 participants with a DSM-IV diagnosis of MDD and 340 screened controls from The Netherlands. Chronic or remitted episodes (severe MDD) were present in 956 participants. The occurrence of childhood trauma was assessed with the Childhood Trauma Interview and the polygenic risk scores were based on genome-wide meta-analysis results from the Psychiatric Genomics Consortium.ResultsThe polygenic risk scores and childhood trauma independently affected MDD risk, and evidence was found for interaction as departure from both multiplicativity and additivity, indicating that the effect of polygenic risk scores on depression is increased in the presence of childhood trauma. The interaction effects were similar in predicting all MDD risk and severe MDD risk, and explained a proportion of variation in MDD risk comparable to the polygenic risk scores themselves.ConclusionsThe interaction effect found between polygenic risk scores and childhood trauma implies that (1) studies on direct genetic effect on MDD gain power by focusing on individuals exposed to childhood trauma, and that (2) individuals with both high polygenic risk scores and exposure to childhood trauma are particularly at risk for developing MDD.


2017 ◽  
Vol 20 (7) ◽  
pp. 836-842 ◽  
Author(s):  
Jorien L Treur ◽  
Karin J H Verweij ◽  
Abdel Abdellaoui ◽  
Iryna O Fedko ◽  
Eveline L de Zeeuw ◽  
...  

Abstract Introduction Classical twin studies show that smoking is heritable. To determine if shared family environment plays a role in addition to genetic factors, and if they interact (G×E), we use a children-of-twins design. In a second sample, we measure genetic influence with polygenic risk scores (PRS) and environmental influence with a question on exposure to smoking during childhood. Methods Data on smoking initiation were available for 723 children of 712 twins from the Netherlands Twin Register (64.9% female, median birth year 1985). Children were grouped in ascending order of risk, based on smoking status and zygosity of their twin-parent and his/her co-twin: never smoking twin-parent with a never smoking co-twin; never smoking twin-parent with a smoking dizygotic co-twin; never smoking twin-parent with a smoking monozygotic co-twin; and smoking twin-parent with a smoking or never smoking co-twin. For 4072 participants from the Netherlands Twin Register (67.3% female, median birth year 1973), PRS for smoking were computed and smoking initiation, smoking heaviness, and exposure to smoking during childhood were available. Results Patterns of smoking initiation in the four group children-of-twins design suggested shared familial influences in addition to genetic factors. PRS for ever smoking were associated with smoking initiation in all individuals. PRS for smoking heaviness were associated with smoking heaviness in individuals exposed to smoking during childhood, but not in non-exposed individuals. Conclusions Shared family environment influences smoking, over and above genetic factors. Genetic risk of smoking heaviness was only important for individuals exposed to smoking during childhood, versus those not exposed (G×E). Implications This study adds to the very few existing children-of-twins (CoT) studies on smoking and combines a CoT design with a second research design that utilizes polygenic risk scores and data on exposure to smoking during childhood. The results show that shared family environment affects smoking behavior over and above genetic factors. There was also evidence for gene–environment interaction (G×E) such that genetic risk of heavy versus light smoking was only important for individuals who were also exposed to (second-hand) smoking during childhood. Together, these findings give additional incentive to recommending parents not to expose their children to cigarette smoking.


2020 ◽  
Author(s):  
Jiawen Chen ◽  
Jing You ◽  
Zijie Zhao ◽  
Zheng Ni ◽  
Kunling Huang ◽  
...  

AbstractPolygenic risk scores (PRS) derived from summary statistics of genome-wide association studies (GWAS) have enjoyed great popularity in human genetics research. Applied to population cohorts, PRS can effectively stratify individuals by risk group and has promising applications in early diagnosis and clinical intervention. However, our understanding of within-family polygenic risk is incomplete, in part because the small samples per family significantly limits power. Here, to address this challenge, we introduce ORIGAMI, a computational framework that uses parental genotype data to simulate offspring genomes. ORIGAMI uses state-of-the-art genetic maps to simulate realistic recombination events on phased parental genomes and allows quantifying the prospective PRS variability within each family. We quantify and showcase the substantially reduced yet highly heterogeneous PRS variation within families for numerous complex traits. Further, we incorporate within-family PRS variability to improve polygenic transmission disequilibrium test (pTDT). Through simulations, we demonstrate that modeling within-family risk substantially improves the statistical power of pTDT. Applied to 7,805 trios of autism spectrum disorder (ASD) probands and healthy parents, we successfully replicated previously reported over-transmission of ASD, educational attainment, and schizophrenia risk, and identified multiple novel traits with significant transmission disequilibrium. These results provided novel etiologic insights into the shared genetic basis of various complex traits and ASD.


2021 ◽  
Author(s):  
Paul O’Reilly ◽  
Shing Choi ◽  
Judit Garcia-Gonzalez ◽  
Yunfeng Ruan ◽  
Hei Man Wu ◽  
...  

Abstract Polygenic risk scores (PRSs) have been among the leading advances in biomedicine in recent years. As a proxy of genetic liability, PRSs are utilised across multiple fields and applications. While numerous statistical and machine learning methods have been developed to optimise their predictive accuracy, all of these distil genetic liability to a single number based on aggregation of an individual’s genome-wide alleles. This results in a key loss of information about an individual’s genetic profile, which could be critical given the functional sub-structure of the genome and the heterogeneity of complex disease. Here we evaluate the performance of pathway-based PRSs, in which polygenic scores are calculated across genomic pathways for each individual, and we introduce a software, PRSet, for computing and analysing pathway PRSs. We find that pathway PRSs have similar power for evaluating pathway enrichment of GWAS signal as the leading methods, with the distinct advantage of providing estimates of pathway genetic liability at the individual-level. Exemplifying their utility, we demonstrate that pathway PRSs can stratify diseases into subtypes in the UK Biobank with substantially greater power than genome-wide PRSs. Compared to genome-wide PRSs, we expect pathway-based PRSs to offer greater insights into the heterogeneity of complex disease and treatment response, generate more biologically tractable therapeutic targets, and provide a more powerful path to precision medicine.


2019 ◽  
Author(s):  
Matthew Aguirre ◽  
Yosuke Tanigawa ◽  
Guhan Ram Venkataraman ◽  
Rob Tibshirani ◽  
Trevor Hastie ◽  
...  

AbstractPolygenic risk models have led to significant advances in understanding complex diseases and their clinical presentation. While models like polygenic risk scores (PRS) can effectively predict outcomes, they do not generally account for disease subtypes or pathways which underlie within-trait diversity. Here, we introduce a latent factor model of genetic risk based on components from Decomposition of Genetic Associations (DeGAs), which we call the DeGAs polygenic risk score (dPRS). We compute DeGAs using genetic associations for 977 traits in the UK Biobank and find that dPRS performs comparably to standard PRS while offering greater interpretability. We show how to decompose an individual’s genetic risk for a trait across DeGAs components, highlighting specific results for body mass index (BMI), myocardial infarction (heart attack), and gout in 337,151 white British individuals, with replication in a further set of 25,486 non-British white individuals from the Biobank. We find that BMI polygenic risk factorizes into components relating to fat-free mass, fat mass, and overall health indicators like physical activity measures. Most individuals with high dPRS for BMI have strong contributions from both a fat mass component and a fat-free mass component, whereas a few ‘outlier’ individuals have strong contributions from only one of the two components. Overall, our method enables fine-scale interpretation of the drivers of genetic risk for complex traits.


2020 ◽  
Vol 26 (4) ◽  
pp. 542-548 ◽  
Author(s):  
Saori Sakaue ◽  
◽  
Masahiro Kanai ◽  
Juha Karjalainen ◽  
Masato Akiyama ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Andre Altmann ◽  
Marzia A Scelsi ◽  
Maryam Shoai ◽  
Eric de Silva ◽  
Leon M Aksman ◽  
...  

Abstract Genome-wide association studies have identified dozens of loci that alter the risk to develop Alzheimer’s disease. However, with the exception of the APOE-ε4 allele, most variants bear only little individual effect and have, therefore, limited diagnostic and prognostic value. Polygenic risk scores aim to collate the disease risk distributed across the genome in a single score. Recent works have demonstrated that polygenic risk scores designed for Alzheimer’s disease are predictive of clinical diagnosis, pathology confirmed diagnosis and changes in imaging biomarkers. Methodological innovations in polygenic risk modelling include the polygenic hazard score, which derives effect estimates for individual single nucleotide polymorphisms from survival analysis, and methods that account for linkage disequilibrium between genomic loci. In this work, using data from the Alzheimer’s disease neuroimaging initiative, we compared different approaches to quantify polygenic disease burden for Alzheimer’s disease and their association (beyond the APOE locus) with a broad range of Alzheimer’s disease-related traits: cross-sectional CSF biomarker levels, cross-sectional cortical amyloid burden, clinical diagnosis, clinical progression, longitudinal loss of grey matter and longitudinal decline in cognitive function. We found that polygenic scores were associated beyond APOE with clinical diagnosis, CSF-tau levels and, to a minor degree, with progressive atrophy. However, for many other tested traits such as clinical disease progression, CSF amyloid, cognitive decline and cortical amyloid load, the additional effects of polygenic burden beyond APOE were of minor nature. Overall, polygenic risk scores and the polygenic hazard score performed equally and given the ease with which polygenic risk scores can be derived; they constitute the more practical choice in comparison with polygenic hazard scores. Furthermore, our results demonstrate that incomplete adjustment for the APOE locus, i.e. only adjusting for APOE-ε4 carrier status, can lead to overestimated effects of polygenic scores due to APOE-ε4 homozygous participants. Lastly, on many of the tested traits, the major driving factor remained the APOE locus, with the exception of quantitative CSF-tau and p-tau measures.


Sign in / Sign up

Export Citation Format

Share Document