scholarly journals Stability Analysis of the Chaotic Lorenz System with a State-Feedback Controller

2021 ◽  
Author(s):  
Dan Jones

The Lorenz model is considered a benchmark system in chaotic dynamics in that it displays extraordinary sensitivity to initial conditions and the strange attractor phenomenon. Even though the system tends to amplify perturbations, it is indeed possible to convert a strange attractor to a non-chaotic one using various control schemes. In this work it is shown that the chaotic behavior of the Lorenz system can be suppressed through the use of a feedback loop driven by a quotient controller. The stability of the controlled Lorenz system is evaluated near its equilibrium points using Routh-Hurwitz testing, and the global stability of the controlled system is established using a geometric approach. It is shown that the controlled Lorenz system has only one globally stable equilibrium point for the set of parameter values under consideration.

2017 ◽  
Vol 27 (08) ◽  
pp. 1750128 ◽  
Author(s):  
Anda Xiong ◽  
Julien C. Sprott ◽  
Jingxuan Lyu ◽  
Xilu Wang

The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.


2021 ◽  
Vol 31 (08) ◽  
pp. 2130024
Author(s):  
Weisheng Huang ◽  
Xiao-Song Yang

We demonstrate in this paper a new chaotic behavior in the Lorenz system with periodically excited parameters. We focus on the parameters with which the Lorenz system has only two asymptotically stable equilibrium points, a saddle and no chaotic dynamics. A new mechanism of generating chaos in the periodically excited Lorenz system is demonstrated by showing that some trajectories can visit different attractor basins due to the periodic variations of the attractor basins of the time-varying stable equilibrium points when a parameter of the Lorenz system is varying periodically.


In this work titled Stability, Bifurcation, Chaos: Discrete prey predator model with step size, by Forward Euler Scheme method the discrete form is obtained. Equilibrium states are calculated and the stability of the equilibrium states and dynamical nature of the model are examined in the closed first quadrant 2 R with the help of variation matrix. It is observed that the system is sensitive to the initial conditions and also to parameter values. The dynamical nature of the model is investigated with the assistance of Lyapunov Exponent, bifurcation diagrams, phase portraits and chaotic behavior of the system is identified. Numerical simulations validate the theoretical observations.


1996 ◽  
Vol 06 (12a) ◽  
pp. 2175-2222 ◽  
Author(s):  
ANSHAN HUANG ◽  
LADISLAV PIVKA ◽  
CHAI WAH WU ◽  
MARTIN FRANZ

In this tutorial paper we present one of the simplest autonomous differential equations capable of generating chaotic behavior. Some of the fundamental routes to chaos and bifurcation phenomena are demonstrated with examples. A brief discussion of equilibrium points and their stability is given. For the convenience of the reader, a short computer program written in QuickBASIC is included to give the reader a possibility of quick hands-on experience with the generation of chaotic phenomena without using sophisticated numerical simulators. All the necessary parameter values and initial conditions are provided in a tabular form. Eigenvalue diagrams showing regions with particular eigenvalue patterns are given.


2015 ◽  
Vol 12 (07) ◽  
pp. 1550081 ◽  
Author(s):  
Tiberiu Harko ◽  
Chor Yin Ho ◽  
Chun Sing Leung ◽  
Stan Yip

We perform the study of the stability of the Lorenz system by using the Jacobi stability analysis, or the Kosambi–Cartan–Chern (KCC) theory. The Lorenz model plays an important role for understanding hydrodynamic instabilities and the nature of the turbulence, also representing a nontrivial testing object for studying nonlinear effects. The KCC theory represents a powerful mathematical method for the analysis of dynamical systems. In this approach, we describe the evolution of the Lorenz system in geometric terms, by considering it as a geodesic in a Finsler space. By associating a nonlinear connection and a Berwald type connection, five geometrical invariants are obtained, with the second invariant giving the Jacobi stability of the system. The Jacobi (in)stability is a natural generalization of the (in)stability of the geodesic flow on a differentiable manifold endowed with a metric (Riemannian or Finslerian) to the non-metric setting. In order to apply the KCC theory, we reformulate the Lorenz system as a set of two second-order nonlinear differential equations. The geometric invariants associated to this system (nonlinear and Berwald connections), and the deviation curvature tensor, as well as its eigenvalues, are explicitly obtained. The Jacobi stability of the equilibrium points of the Lorenz system is studied, and the condition of the stability of the equilibrium points is obtained. Finally, we consider the time evolution of the components of the deviation vector near the equilibrium points.


2019 ◽  
Vol 24 (1) ◽  
pp. 37-51 ◽  
Author(s):  
B.S. Bhadauria ◽  
A. Singh ◽  
M.K. Singh

Abstract The present article aims at investigating the effect of gravity modulation on chaotic convection of a viscoelastic fluid in porous media. For this, the problem is reduced into Lorenz system (non-autonomous) by employing the truncated Galerkin expansion method. The system shows transitions from periodic to chaotic behavior on increasing the scaled Rayleigh number R. The amplitude of modulation advances the chaotic nature in the system while the frequency of modulation has a tendency to delay the chaotic behavior which is in good agreement with the results due to [1]. The behavior of the scaled relaxation and retardation parameter on the system is also studied. The phase portrait and time domain diagrams of the Lorenz system for suitable parameter values have been used to analyze the system.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Pattrawut Chansangiam

This paper investigates the chaotic behavior of a modified jerk circuit with Chua’s diode. The Chua’s diode considered here is a nonlinear resistor having a symmetric piecewise linear voltage-current characteristic. To describe the system, we apply fundamental laws in electrical circuit theory to formulate a mathematical model in terms of a third-order (jerk) nonlinear differential equation, or equivalently, a system of three first-order differential equations. The analysis shows that this system has three collinear equilibrium points. The time waveform and the trajectories about each equilibrium point depend on its associated eigenvalues. We prove that all three equilibrium points are of type saddle focus, meaning that the trajectory of (x(t),y(t)) diverges in a spiral form but z(t) converges to the equilibrium point for any initial point (x(0),y(0),z(0)). Numerical simulation illustrates that the oscillations are dense, have no period, are highly sensitive to initial conditions, and have a chaotic hidden attractor.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order discrete noninvertible map of cubic type is presented. Firstly, the stability of the equilibrium points for the map is examined. Secondly, the dynamics of the map with two different initial conditions is studied by numerical simulation when a parameter or a derivative order is varied. A series of attractors are displayed in various forms of periodic and chaotic ones. Furthermore, bifurcations with the simultaneous variation of both a parameter and the order are also analyzed in the three-dimensional space. Interior crises are found in the map as a parameter or an order varies. Thirdly, based on the stability theory of fractional-order discrete maps, a stabilization controller is proposed to control the chaos of the map and the asymptotic convergence of the state variables is determined. Finally, the synchronization between the proposed map and a fractional-order discrete Loren map is investigated. Numerical simulations are used to verify the effectiveness of the designed synchronization controllers.


2012 ◽  
Vol 524-527 ◽  
pp. 3705-3708
Author(s):  
Guang Cai Sun

This paper deals with the mathematics model of two populations Commensalisms symbiosis and the stability of all equilibrium points the system. It has given the conclusion that there is only one stable equilibrium point the system. This paper also elucidates the biology meaning of the model and its equilibrium points.


Sign in / Sign up

Export Citation Format

Share Document