scholarly journals Extending The Vase Life of Peruvian Lily (Alstroemeria Spp.) With 1‐Methylcyclopropene and Ascorbic Acid

2019 ◽  
Vol 7 (2) ◽  
pp. 174-183
Author(s):  
B.S. Obadamudalige ◽  
Chalinda Koshitha Beneragama ◽  
S.M.M.R. Mawalagedera

Alstroemeria spp. is one of the highly demanded cut flower in the local and global cut flower market. Short vase life of flowers and leaves, petal wilting, petal drop, and transparency of petals are major postharvest problems. The objective was to extend the vase life of Alstroemeria spp. with 1-methylcyclopropene and ascorbic acid. Freshly cut flowering stems of Alstroemeria spp. were treated with 1-methylcyclopropene (0.25 ppm) and ascorbic acid (57 mM) alone and in combination of the two, for six hours. Distilled water was used as the control. Postharvest concentrations of anthocyanin, chlorophyll and glucose in flowers were best maintained when treated with a combination of 1‐methylcyclopropene and ascorbic acid, compared to all other treatments. Percentage fresh weight loss was same among treatments. The best treatment to extend vase life of Alstroemeria spp. is the combination of 1‐methylcyclopropene and ascorbic acid, which extended the vase life by additional seven days compared to the control. Int. J. Appl. Sci. Biotechnol. Vol 7(2): 174-183

2020 ◽  
Vol 19 (4) ◽  
pp. 95-103
Author(s):  
Soner Kazaz ◽  
Tuğba Kılıç ◽  
Elçin Gözde Ergür Şahin

Vase life is one of the most important factors determining the marketability of cut flowers and influenced by water balance strongly. In recent years, the consumption of hydrangeas as a cut flower has gradually increased. However, the vase life of cut hydrangea flowers is short depends on wilting. Thus, this study was conducted to determine the effects of different treatments [thymol (100, 150 and 200 mgL–1), 8-hydroxyquinoline sulfate (8-HQS) (200 mgL–1)], and their combination with and without 1% sucrose on the vase life, relative fresh weight, daily (solution uptake for 3 days) and total solution uptake of hydrangeas (Hydrangea macrophylla ‘Green Shadow’) harvested freshly. Distilled water was used as the control. Compared to the control, thymol 150 mgL–1 treatment with 1% sucrose significantly increased the vase life of hydrangeas flowers in 5.80 days (from 10.7 to 16.5 days). It was also determined that same treatment increased the total solution uptake and delayed relative fresh weight loss. These results indicated that thymol treatments in combination with sucrose can be used to extend the vase life of cut hydrangea.


2009 ◽  
Vol 57 (2) ◽  
pp. 165-174
Author(s):  
F. Hassan

This investigation was carried out to study the effect of 100, 200 and 300 ppm 8-hydroxyquinoline sulphate (8-HQS) and 5 and 10% sucrose treatments on the vase life and post-harvest quality of cut flowers of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome. All possible combinations of 8-HQS and sucrose were tested. The treatments were applied as holding solutions, and control flowers were held in distilled water till the end of the experiment. All the treatments significantly increased the vase life and number of open florets of Strelitzia reginae cut flowers compared to the control. Applying 8-HQS and sucrose treatments in both seasons improved the vase life and floret longevity of Hippeastrum vittatum cut flowers. In addition, the percentage of fresh weight gain from the initial weight and the carbohydrate content were also enhanced in both cut flower crops. In order to obtain the highest post-harvest quality of Strelitzia reginae Ait. and Hippeastrum vittatum Herb. cv. Apple Blossome cut flowers, treatment with 200 ppm 8-HQS + 10% sucrose was recommended.


2021 ◽  
Vol 70 (1) ◽  
pp. 27-34
Author(s):  
Edwin Pulido ◽  
Raquel Rejane Negrelle ◽  
Francine Lorena Cuquel

Vriesea incurvata is a native bromeliad from Brazilian Atlantic Rainforest and commercialized as an ornamental pot plant. The morphological characteristics of its floral scape may also indicate it as a new product to use as a cut flower. However, its postharvest behavior was unknown. This study was conducted to determine its vase life by applying distilled water (control) and solutions containing sucrose (50 g L-1), salicylic acid (50 μM), and citric acid (50 g L-1) for periods of 8 and 24 h. Floral scapes maintained in solutions showed vase life greater than 16 days when compared to the control (distilled water). However, solutions with sucrose evidenced the best behaviors related to the maintenance of physiological and aesthetic features during the vase life of the floral scapes. It is concluded that solutions with sucrose, salicylic acid, and citric acid applied for 8 and 24 h extend the vase life of the V. incurvata floral scapes. Sucrose applied for 8 h promotes the maintenance of color, brightness, and turgidity; improves water balance, and reduces the relative fresh weight losses of floral scapes throughout the vase life, extending their longevity up to 24 days.


2018 ◽  
Vol 24 (2) ◽  
pp. 103-108
Author(s):  
Tania Pires Da Silva ◽  
Fernanda Ferreira Araujo ◽  
Fernando Luiz Finger

The objective of this study was to evaluate the growth regulators action on the senescence of wild pansy flowers. In the first experiment, floral stems were treated with ethylene for 24 hours at concentrations of 0.1, 1.0, 10, 100 and 1000 μL L-1 and control without the hormone. In a second experiment, the flowers were immersed in solutions of abscisic acid (ABA) containing 5, 20, 50 and 100 μM for one minute and control with water. In a third experiment, 1-methylcyclopropene (1-MCP) was applied at concentrations of 0.5, 1.0 and 1.5 μL L-1 and control without the chemical. In a fourth experiment, 1-MCP and ethylene were applied, where 1-MCP was first applied followed by ethylene. After the treatments with 1-MCP and ethylene, the floral stems were removed from the hermetic chambers and kept in a vessel containing distilled water at 25 °C, 10 μmol m-2 s- 1 white fluorescent light and 50-70% relative humidity as for the ABA treatment. Flowers treated with ethylene did not present significant differences among the concentrations for visual senescence, showing evidence that this flower is not sensitive to ethylene. Treatment with 1000 μL L-1 of ethylene led to a slightly higher fresh weight loss than other treatments, which had a loss of about 33% at end of the experiment. For the ABA treatment, the flowers showed similar fresh weight loss among the different treatments; however, higher concentrations induced slight senescence of flowers. The use of 1-MCP increased the longevity of wild pansy flowers. These results show that 1-MCP is beneficial in maintaining the flower water status, even in the presence of exogenous ethylene, although ethylene may not be directly involved in the senescence of wild pansy flowers.


2014 ◽  
Vol 22 (2) ◽  
pp. 19-30 ◽  
Author(s):  
Fatemeh Begri ◽  
Ebrahim Hadavi ◽  
Amrollah Nabigol

AbstractIn this study, succinic acid (0, 1 and 2 mM), malic acid (0, 1 and 2 mM), ethanol (0, 2 and 4% v/v), and their mixtures were applied as preservative solutions for cut flowers of spread carnation cv. ‘White Natila’ and their effect on the longevity, the amount of absorbed solution, malondialdehyde and chlorophyll content, cell membrane stability, fresh, and dry weight and on a visual quality was determined. A similarity in the effect of malic acid and succinic acid on dry weight and fresh weight loss were found. Ethanol positively affected most of the studied traits, including the vase life and fresh weight loss. The preservative solution containing 1 mM of malic acid and 4% ethanol resulted in the longest average vase life - 11.1 days compared to 8.9 days in the control. Malic acid showed a significant positive synergism with ethanol that makes it reasonable to combine them in preservative solutions intended to extend the vase life of cut spray carnation.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 659d-659
Author(s):  
Gloria McIntosh ◽  
Gerald Klingaman

Several cut flower species were studied to determine their feasibility for cut flower production. Three fertilizer treatments (0.5, .1, and .15kg/m2 respectively) were used and their effect on number of stems, stem length and fresh weight were determined. Celosia cristata and Ageratum houstonianum `Blue Horizon' proved to respond best to fertilizer treatments. Celosia fertilized at a rate of .15kg/m2 will produce approximately 200 stems/m2. Ageratum will produce appoximately 400 stems/m2 when fertilized at a rate of .10kg/m2. Fertlizer rates of .10 and .15 kg/m2 for Eustoma culture yielded 86 stems/m2, which was lower than other species used in this test. Extended vase life and consumer response could possibly justify using this species in cut flower production. An economic break-even analysis will be presented to show what price will have to be received per stem to cover costs.


HortScience ◽  
1993 ◽  
Vol 28 (12) ◽  
pp. 1178-1179 ◽  
Author(s):  
Rodney B. Jones ◽  
Margrethe Serek ◽  
Michael S. Reid

The vase life of cut sunflowers given a simulated transport period (3 days dry storage at 8C) was significantly enhanced by a l-hour pulse with 0.01% Triton X-100 administered before storage. The Triton pulse increased solution uptake during the l-hour pulse, decreased fresh weight loss during dry storage, and significantly improved water uptake thereafter, resulting in greater leaf turgidity and longer vase life. Leaf stomata] conductance measurements indicated that Triton X-100 maintained stomatal opening at a higher level during the pulse and after storage, but had no effect during dry storage. Chemical name used: octylphenoxypolyethoxyethanol (Triton X-100).


2019 ◽  
Vol 27 (2) ◽  
pp. 1-10
Author(s):  
Takanori Horibe ◽  
Maho Makita

AbstractDeveloping a method for the control of cut flower opening and improvement of cut flower quality is important to meet consumer demand. In this study, we investigated the effects of methyl jasmonate (MeJA) on flower opening of three rose cultivars: ‘Red Star,’ ‘Princes Meg,’ and ‘Madrid’. Shoot bases of cut roses were immersed in water solutions containing 100- or 1000-μM MeJA in addition to 2% weight/volume (w/v) sucrose and 0.02% w/v 8-hydroxyquinoline monohydrate. Subsequently, the vase life, flower opening, petal wilting, petal weight, water uptake, and water evaporation were measured. Flower opening of all three cultivars was clearly delayed following the treatment with MeJA, resulting in prolonged vase life compared with control. In addition, flower wilting was suppressed in all cultivars. Moreover, 7 days following treatment, the petal fresh weight was maintained high in the ‘Red Star’ and ‘Princes Meg’ cultivars. However, there was no significant difference in the ‘Madrid’ cultivar versus control. In all three cultivars, there was a minimal difference in the total amount of water uptake and evaporation. Thus, it is suggested that the total amount of water uptake and evaporation have limited relevance to the changes in the relative fresh weight of cut roses and petal fresh weight observed following treatments. Despite the difference in the sensitivity of the rose cultivars to treatment with MeJA, we conclude that MeJA has high potential as a quality retention agent for cut roses.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1742
Author(s):  
Jinnan Song ◽  
Yali Li ◽  
Jiangtao Hu ◽  
Jaehyeok Lee ◽  
Byoung Ryong Jeong

Peony is an important ornamental plant and has become increasingly popular for cut flower cultivation. However, a short vase life and frequent poor vase quality severely restrict its market value. The study described herein was conducted to investigate the effects of silicon application on the vase life and quality of two cut peony (Paeonia lactiflora Pall.) cultivars, ‘Taebaek’ and ‘Euiseong’. For pre- and/or postharvest silicon application, four experimental groups based on treatments were designed. With silicon treatment, the relevant growth attributes, including the shoot and leaf lengths, stem and bud diameters as well as the leaf width were all remarkably increased. In the postharvest storage, the addition of silicon to the holding solution in the vase was able to significantly extend vase life, delay fresh weight decrease, and improve vase quality, as characterized by the antioxidant enzyme activities and mechanical stem strength. Taken together, silicon application, regardless of the approach, was able to effectively prolong the vase life and enhance the quality of cut peony flowers.


2016 ◽  
Vol 19 (4) ◽  
pp. 24-34
Author(s):  
Thuan Thi Ngoc Nguyen ◽  
Viet Trang Bui

Morphological and physiological changes were investigated during flower growth and opening to extend the vase life of cut lotus flowers. When holding the flowers in distilled water, the edge of petals and the top edge of petals became black, and the stems were bent after 17 hours. Flowers fully opened and senesced after 25 hours. At full opening flower stage, there were decreases in fresh weight, and content of starch, auxin and zeatin, and increases in dry weight, and content of total sugar, anthocyanins and flavonols, ABA and gibberellin. Petal extract showed the presence two absorption peaks at 354 nm ( due to flavonols) and 535 nm (due to anthocyanins). Among the treatments, the combination of wilted flower (5 % fresh weight) and spraying of 2 mg/L NAA and 10 % coconut water (with 0,1 % Tween 20) gave a 2 days (43,22 hours) longer for cut lotus flowers than the control.


Sign in / Sign up

Export Citation Format

Share Document