scholarly journals Prevalence of Pathogenic Bacteria Isolated from Surgical Site and Wound Infection among Patients Admitted in some selected Hospitals in Sokoto Metropolis, Nigeria

2014 ◽  
Vol 3 (3) ◽  
pp. 89-103
Author(s):  
UK Muhammad ◽  
TM Adamu ◽  
Z Binji ◽  
MA Isa

Surgical and open wounds are commonly encountered in clinical practice. This study was aim to determine the prevalence of pathogenic bacteria in surgical and open wound infection among patients admitted in some selected hospitals in Sokoto metropolis. A total of one hundred and fifty one (151) isolates were obtained from two hundred (200) surgical site and wound samples collected from patients in this study. The result showed that Usmanu Danfodiyo Teaching Hospital Sokoto (UDUTH) had the highest number of clinical isolates with 64 gram positive and gram negative bacteria followed by Specialist Hospital Sokoto (S.H.S) with 57 gram positive and gram negative bacteria and then Maryam Abacha Women and Children Hospital (MAWCH) with 30 gram positive and gram negative bacteria. Gram positive cocci 108 (71.5%) were more predominant pathogen isolated in the hospitals than gram negative bacilli 43 (28.5%). Staphylococcus aureus had the highest number of occurrence with 54(35.76%) followed by Coagulate negative Staphylococci with 47(31.1%) while Citrobacter freundii had the lowest number of occurrence with 2(1.32%) isolates. Also, the susceptibility of the isolates to antimicrobial agents were carried out using Amoxacillin, Ampicillin, Erythromycin, Chloramphenicol, Ampiclox, Ciprofloxacin, Gentamycin, Tetracycline, Pefloxacin and Cotrimoxazole. The mean zone of inhibition recorded against Staphlococcus aureus by using Amoxacillin antibiotic is 2.20mm while with Citrobacter freundii is 1.00. DOI: http://dx.doi.org/10.3126/ije.v3i3.11066 International Journal of Environment Vol.3(3) 2014: 89-103

2007 ◽  
Vol 70 (9) ◽  
pp. 2063-2071 ◽  
Author(s):  
ELENA del RÍO ◽  
REBECA MURIENTE ◽  
MIGUEL PRIETO ◽  
CARLOS ALONSO-CALLEJA ◽  
ROSA CAPITA

The effects of dipping treatments (15 min) in potable water or in solutions (wt/vol) of 12% trisodium phosphate (TSP), 1,200 ppm acidified sodium chlorite (ASC), 2% citric acid (CA), and 220 ppm peroxyacids (PA) on inoculated pathogenic bacteria (Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella Enteritidis, Escherichia coli, and Yersinia enterocolitica) and skin pH were investigated throughout storage of chicken legs (days 0, 1, 3, and 5) at 3 ± 1°C. All chemical solutions reduced microbial populations (P < 0.001) as compared with the control (untreated) samples. Similar bacterial loads (P > 0.05) were observed on water-dipped and control legs. Type of treatment, microbial group, and sampling day influenced microbial counts (P < 0.001). Average reductions with regard to control samples were 0.28 to 2.41 log CFU/g with TSP, 0.33 to 3.15 log CFU/g with ASC, 0.82 to 1.97 log CFU/g with CA, and 0.07 to 0.96 log CFU/g with PA. Average reductions were lower (P < 0.001) for gram-positive (0.96 log CFU/g) than for gram-negative (1.33 log CFU/g) bacteria. CA and ASC were the most effective antimicrobial compounds against gram-positive and gram-negative bacteria, respectively. TSP was the second most effective compound for both bacterial groups. Average microbial reductions per gram of skin were 0.87 log CFU/g with TSP, 0.86 log CFU/g with ASC, 1.39 log CFU/g with CA, and 0.74 log CFU/g with PA for gram-positive bacteria, and 1.28 log CFU/g with TSP, 2.03 log CFU/g with ASC, 1.23 log CFU/g with CA, and 0.78 log CFU/g with PA for gram-negative bacteria. With only a few exceptions, microbial reductions in TSP- and ASC-treated samples decreased and those in samples treated with CA increased throughout storage. Samples treated with TSP and samples dipped in CA and ASC had the highest and lowest pH values, respectively, after treatment. The pH of the treated legs tended to return to normal (6.3 to 6.6) during storage. However, at the end of storage, the pH of legs treated with TSP remained higher and that of legs treated with CA remained lower than normal.


2014 ◽  
Vol 8 (3) ◽  
pp. 40-45
Author(s):  
Zina Hashem Shehab ◽  
Huda Suhail Abid ◽  
Sumaya Fadhil Hamad ◽  
Sara Haitham

The study was conducted to evaluate the inhibitory activity of methanol extract of Gardenia jasminoides leaves compared with leaf crude extracts for some organic solvents namely Methanol, Ethanol, Petroleum ether, Asetone and Chloroform on growth of some pathogenic bacteria and yeast, which included four gram positive isolates Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes and Bacillus cereus and gram negative isolates Escherichia coli, Salmonella typhi, Proteus vulgaris and Pseudomonas aeruginosa and some yeasts Candida albicans and Saccharomyces boulardii, by using well diffusion method. The inhibitory activity of extracts in the tested bacterial strains and yeasts was varied according to the type of extracting solvents and are tested microorganisms. The methanol callus extract which grown on Murashige and Skoog (MS) media by using (Naphthalen acitic acid) NAA and (Benzyle adenine) BA as growth regulator highly effective as compared to the other extracts as for inhibition of three gram positive bacteria and three gram negative bacteria,which include Staphylococcus aureus and, Proteus vulgaris, followed by acetone and ethanolic extracts which include two gram positive bacteria and two gram negative bacteria. All extracts had highly effect in growth of Candida albicans while all crude extracts didn’t show any sensitivity against Saccharomyces boulardii, and when we’d done (High Performance Liquid Chromatography) HPLC test for detection of some active compound we found Quinic acid, Iridiods glycosides and Crocin which its rate in fresh callus was higher than fresh leaves.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2011 ◽  
Vol 60 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Svetlana A. Ermolaeva ◽  
Alexander F. Varfolomeev ◽  
Marina Yu. Chernukha ◽  
Dmitry S. Yurov ◽  
Mikhail M. Vasiliev ◽  
...  

Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.


2020 ◽  
Vol 10 (4) ◽  
pp. 639-654
Author(s):  
А. A. Meleshko ◽  
A. G. Afinogenova ◽  
G. E. Afinogenov ◽  
A. A. Spiridonova ◽  
V. P. Tolstoy

Metal and metal oxide nanoparticles (NPs) are promising antibacterial agents. They have a broad antimicrobial activity against both Gram-positive and Gram-negative bacteria, viruses, and protozoans. The use of NPs reduces the possibility of the microbial resistance development. This review briefly shows the general mechanisms and the main factors of antibacterial activity of NPs. In this article, a comprehensive review of the recent researches in the field of new antimicrobial agents with superior long-term bactericidal activity and low toxicity is provided. The review gives the examples of synthesis of double and triple nanocomposites based on following oxides: CuO, ZnO, Fe3O4, Ag2O, MnO2, etc. including metal and nonmetal doped nanocomposites (for example with Ag, Ce, Cr, Mn, Nd, Co, Sn, Fe, N, F, etc.). Compared with bactericidal action of individual oxides, the nanocomposites demonstrate superior antibacterial activity and have synergistic effects. For example, the antimicrobial activity of ZnO against both Gram-positive and Gram-negative bacteria was increased by -100% by formation of triple nanocomposites ZnO—MnO2—Cu2O or ZnO—Ag2O—Ag2S. Similar effect was showed for Ce-doped ZnO and Zn-doped CuO. The present article also provides the examples of nanocomposites containing NPs and organic (chitosan, cellulose, polyvinylpyrrolidone, biopolymers, etc.) or inorganic materials with special structure (graphene oxide, TiO2 nanotubes, silica) which demonstrate controlled release and longterm antibacterial activity. All of the considered nanocomposites and their combinations have a pronounced long-term antimicrobial effect including against antibiotic-resistant strains. They are able to prevent the formation of microbial biofilms on biotic and abiotic surfaces, have low toxicity to eukaryotic cells, demonstrate anti-inflammatory and woundhealing properties in compositions with polymers (sodium alginate, collagen, polyvinylpyrrolidone, etc.). The use of nanoscale systems can solve several important practical problems at the same time: saving of long-term antimicrobial activities while reducing the number of compounds, creation of new antimicrobial agents with low toxicity and reduced environmental impact, development of new biocidal materials, including new coatings for effective antimicrobial protection of medical devices.


2021 ◽  
Vol 12 (2) ◽  
pp. 1824-1834

Secondary metabolites from the shoots and roots of three Rumex species collected from three different habitats were investigated (Rumex dentatus collected from cultivated land, R. pictus collected from the coastal desert and R. vesicarius collected from the inland desert) and tested for antioxidant activity as well as for anti-microbial activity against some human pathogenic bacteria. The present study indicated that the quantitative analysis of shoot and root extracts of three Rumex spp. were found to be rich in tannins and phenolics composition. The aerial parts of the three plants exhibited the highest significant values compared to the root parts. The MeOH extracts of Rumex species showed adequate antioxidant activity, wherein the IC50 values of the MeOH from the cultivated sample was 41.61 and 31.31 mg mL-1, coastal samples were 34.99 and 23.99 mg mL-1, while the sample of inland showed IC50 value of 41.59 and 31.67 mg mL-1, for root and shoot, respectively. Furthermore, using a filter paper disc assay, the MeOH extracts of the three Rumex species showed a substantial anti-microbial inhibitory effect on the growth of 10 pathogenic bacteria. According to sensitivity, the tested organisms could be sequenced as following: E. coli < K. pneumoniae ˂ S. typhi < P. aeruginosa for Gram-negative bacteria and B. subtilis < S. pneumoniae ˂ L. monocytoyenes < S. epidermis < S. aureus < B. cereus for Gram-positive bacteria. In addition, the antibacterial performance of R. dentatus root and R. vesicarius shoot MeOH extract is 100% broad spectrum against Gram-negative bacteria. A shoot of R. dentatus and R. pictus MeOH extract against Gram-positive bacteria is 83.3% broad spectrum. A further study is recommended for more characterization of the major compounds and assesses their efficiency and biosafety.


2022 ◽  
Vol 12 (2) ◽  
pp. 710
Author(s):  
Fohad Mabood Husain ◽  
Faizan Abul Qais ◽  
Iqbal Ahmad ◽  
Mohammed Jamal Hakeem ◽  
Mohammad Hassan Baig ◽  
...  

Global emergence and persistence of the multidrug-resistant microbes have created a new problem for management of diseases associated with infections. The development of antimicrobial resistance is mainly due to the sub-judicious and unprescribed used of antimicrobials both in healthcare and the environment. Biofilms are important due to their role in microbial infections and hence are considered a novel target in discovery of new antibacterial or antibiofilm agents. In this article, zinc oxide nanoparticles (ZnO-NPs) were prepared using extract of Plumbago zeylanica. ZnO-NPs were characterized and then their antibiofilm activity was tested against Gram-positive and Gram-negative bacteria. The ZnO-NPs were polydispersed, and the average size was obtained as 24.62 nm. The presence of many functional groups indicated that phytocompounds of P. zeylanica were responsible for the synthesis, capping, and stabilization of ZnO-NPs. Synthesized NPs inhibited the biofilm formation of E. coli, S. aureus, and P. aeruginosa by 62.80%, 71.57%, and 77.69%, respectively. Likewise, concentration-dependent inhibition of the EPS production was recorded in all test bacteria. Microscopic examination of the biofilms revealed that ZnO-NPs reduced the bacterial colonization on solid support and altered the architecture of the biofilms. ZnO-NPs also remarkably eradicated the preformed biofilms of the test bacteria up to 52.69%, 59.79%, and 67.22% recorded for E. coli, S. aureus, P. aeruginosa, respectively. The findings reveal the ability of green synthesized zinc oxide nanoparticles to inhibit, as well as eradicate, the biofilms of Gram-positive and Gram-negative bacteria.


New compounds containing 4-thiazolidinone pharmacophore 5(a) and (5b) have been synthesized. The chemical structures of the intermediate and final compounds were characterized and confirmed by using FT-IR and 1H-NMR spectroscopy. All final compounds were tested against gram-positive and gram-negative bacteria using a well-diffusion technique for their ability as antimicrobial agents. The tested compounds 5a and 5b showed variable and modest antibacterial activity against gram-negative bacteria and gram-positive bacteria. Molecular docking simulations were studied to understand the molecular core. The results were achieved by docking, the most active compounds into the active site of protein of the bacteria which completely accorded with in vitro results.


Sign in / Sign up

Export Citation Format

Share Document