scholarly journals Soils as proxies of the history of landscape and climate: Examples from eastern Bhutan

2013 ◽  
Vol 46 ◽  
Author(s):  
Karma Dema Dorji ◽  
Rupert Bliumler

The reconstruction of the landscape history and past environmental fluctuations is a major task with respect to forecasting man or naturally-induced changes. In this context the extent of soil development in fluvial deposits of the Chamkhar Chhu river system in Eastern Bhutan were studied for relative age dating. The deposits represent 25 fluvial terraces up to more than 260 m above the recent river level. We used a set of methods covering physical (soil texture, specific surface area) and chemical (pedogenic oxides, soil development indices) processes, and we calculated solum-weighted means of individual soil parameters to compare different sites, and to minimize problems caused by heterogeneity of the parent materials. The results were maintained by numerical age dating of fossil A horizons. Pedogenic oxides and soil development indices as well as soil texture indicate that soils can be used as proxies of the history of landscape and climate. Local as well as global climate fluctuations are well preserved in the soils despite slope processes inducing reverse-tended soil formation in fluvial deposits of Late Pleistocene origin and older, while soils on fluvial deposits of Holocene age indicate distinct chronosequences (Dorji et al. 2009).

2002 ◽  
Vol 81 (2) ◽  
pp. 211-215 ◽  
Author(s):  
R.T. Van Balen ◽  
R.F. Houtgast ◽  
F.M. Van der Wateren ◽  
J. Vandenberghe

AbstractUsing marine planation surfaces, fluvial terraces and a digital terrain model, the amount of eroded rock volume versus time for the Meuse catchment has been computed. A comparison of the amount of eroded volume with the volume of sediment preserved in the Roer Valley Rift System shows that 12% of the eroded volume is trapped in this rift. The neotectonic uplift evolution of the Ardennes is inferred from the incision history of the Meuse River system and compared to the subsidence characteristics of the Roer Valley Rift System. Both areas are characterized by an early Middle Pleistocene uplift event.


1993 ◽  
Vol 39 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Terry W. Swanson ◽  
Deborah L. Elliott-Fisk ◽  
Randel J. Southard

AbstractDetailed mapping and provisional numerical age determinations of glacial deposits in the South Chiatovich Creek Basin of the White Mountains provide an opportunity to evaluate the ability of conventional soil parameters to discriminate first- and second-order glacial events. Sampling and analytical procedures were designed to minimize variation in climate and lithology. When lithology and climate are similar among sites, age trends are more pronounced in both field and chemical soil properties. Profile development indices (PDIs), adjusted by removing melanization and pH, systematically increase with greater soil age, and discriminate first-order, but not second-order, glacial events. The best-fit curve for adjusted PDI data assumes an exponential form and suggests that the rate of soil formation in this region decreases over time, similar to the rate of weathering-rind development. Variation in eolian influx and surface erosion, which are dominant processes affecting soils of the basin, cause major uncertainties in establishing soil age and, hence, soil-development rates. Even on the youngest glacial deposits, soil age is probably significantly less than deposit age due to these geomorphic processes. Soil and weathering parameters imply that these field techniques can be inexpensively employed to define relative chronologies and to assess surface degradation and its impact on surface exposure ages. Results from this study indicate that site-selection strategy for establishing glacial chronologies should be reevaluated. Working with stable residual bedrock surfaces and associated low-relief outwash fans and terraces may prove more productive than focusing on relatively unstable moraine surfaces in tectonically active mountain systems.


2021 ◽  
Author(s):  
Joshua Leigh ◽  
Chris Stokes ◽  
David Evans ◽  
Richard Jones ◽  
Liss Andreassen ◽  
...  

<p>Detailed investigations into Holocene glacier fluctuations are a fundamental tool in developing reliable reconstructions of past climate variability and the detection of global climate change. There are, however, many mountain areas that have escaped detailed scrutiny. Here we present a large-scale glacial geomorphological and geochronological study of the central Troms and Finnmark county region in Arctic Norway (covering an area of 6,810 km<sup>2</sup>) in order to reconstruct glacier change from the early Holocene to present. We undertake the first glacial chronological study in the Rotsund Valley, central Troms and Finnmark county, based on moraine dating using a combination of absolute, calibrated, and relative age dating techniques (terrestrial cosmogenic nuclide dating (TCND), Schmidt hammer dating, and soil chronosequencing). Together with our chronological data, our detailed mapping from a much wider area reveals a complex picture of early-Holocene deglaciation and late-Holocene glacier re-advance and we postulate that specific moraine formations are linked to key climatic events including: the Erdalen Event (between 10,100 and 9,700 cal. yrs. BP), the Finse / ‘8.2 ka' Event (between 8,500 and 8,000 cal. yrs. BP), and the Neoglacial (from ~4,500 cal. yrs. BP to the LIA maximum).</p>


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 171
Author(s):  
Gaurav Mishra ◽  
Rosa Francaviglia

Northeast (NE) India is a typical tropical ecosystem with a luxuriant forest vegetation cover, but nowadays forests are under stress due to exploitation and land use changes, which are known to affect soil health and productivity. However, due to a scarcity of data, the influence of land uses and altitude on soil properties of this peculiar ecosystem is poorly quantified. This study presents the changes in soil properties in two districts of Nagaland (Mon and Zunheboto) in relation to land uses (forest, plantation, jhum and fallow jhum), altitude (<500 m, 500–1000 m, >1000 m) and soil texture (coarse, medium, fine). For this, a random soil sampling was performed in both the districts. Results indicated that soil organic carbon (SOC) stocks and available potassium (K) were significantly influenced by land uses in the Mon district, while in Zunheboto a significant difference was observed in available phosphorus (P) content. SOC stocks showed an increasing trend with elevation in both districts. The influence of altitude on P was significant and the maximum concentration was at lower elevations (<500 m). In Mon, soil texture significantly affected SOC stocks and the available N and P content. The variability in soil properties due to land uses, altitudinal gradients and textural classes can be better managed with the help of management options, which are still needed for this ecosystem.


2013 ◽  
Vol 37 (3) ◽  
pp. 422-431 ◽  
Author(s):  
William L. Graf

James C. Knox’s 1977 paper “Human Impacts on Wisconsin Stream Channels,” published in the Annals of the Association of American Geographers, was a key component of a suite of three papers by him defining the response of rivers to the introduction and management of agriculture and to climate change. In this paper he used the Driftless Area of southwest Wisconsin as a laboratory where he could define fluvial responses by their sedimentary signatures in floodplain deposits. Land-use records dating back to the early 19th century along with shorter climate records provided his understanding of the drivers of change. He found that floods increased as an outcome of land-cover change. Upstream tributaries became wider and shallower as coarse deposits limited their adjustments, while main stem channels became narrower and deeper. His paper reflected the influence of his graduate advisor and especially of prominent faculty colleagues at the University of Wisconsin from fields ranging from soils and climatology to geomorphology and history. The paper was the subject of considerable debate in the professional community, but it remains a much-cited example of Knox’s work in unraveling the Quaternary and Holocene history of rivers of the Driftless Area and by extension the upper Mississippi River system.


2021 ◽  
pp. SP523-2021-73
Author(s):  
D. V. Palcu ◽  
W. Krijgsman

AbstractA complex interplay of palaeoclimatic, eustatic and tectonic processes led to fragmentation and dissipation of the vast Tethys Ocean in Eocene-Oligocene times. The resulting Paratethys Sea occupied the northern Tethys region on Eurasia, grouping water masses of various subbasins, separated from each other and from the open ocean through narrow and shallow gateways and land bridges. Changes in marine gateway configuration and intra-basinal connectivity affected the regional hydrology, shifting most Paratethyan basins to extreme carbon-sink anoxic environments, anomalohaline evaporitic or brackish conditions or even endorheic lakes. Paratethys gateway restriction triggered the onset of a long-lasting (∼20 Myr) giant anoxic sea, characterised by stratified water masses and anoxic bottom water conditions, resulting in thick hydrocarbon source rocks. Here, we review the geological evolution of the “dire straits” of Paratethys that played a crucial role in the Eocene-Oligocene connectivity history of the Central Eurasian seas and we show that the main anoxic phases (Kuma and Maikop) correspond to restricted connectivity with the global ocean and a period of CO2 depletion in the atmosphere. Paratethys represents one of the largest carbon sinks of Earth's history and may thus have played a prominent role in global climate change.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 901-914 ◽  
Author(s):  
M. Oliva ◽  
G. Vieira ◽  
P. Pina ◽  
P. Pereira ◽  
M. Neves ◽  
...  

Abstract. Ice wedges are widespread periglacial features in the landscape of Adventdalen, Svalbard. The networks of ice wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the mid Holocene until 3.3 ka BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest part of Adventdalen.


2020 ◽  
Vol 19 (4) ◽  
pp. 463-478
Author(s):  
Mai Duc Dong ◽  
Phung Van Phach ◽  
Nguyen Trung Thanh ◽  
Duong Quoc Hung ◽  
Pham Quoc Hiep ◽  
...  

The Simclast model has been verified and applied effectively in simulating the delta development for some major deltas in the world. In this study, we applied the model Simclast for simulating the history of the Red river delta development in late Pleistocene-Holocene. Results of the model reveal that the mainland of study area had reduced rapidly during transgression period (10,000-8,000 BP). The morphology changed significantly in the paleo-Red and Day river systems, but slightly in the paleo Thai Binh river system. The paleo-river network had been active in upper part before 11,000 BP and then shifted seaward until 2,000 BP. The river-sea interaction causes erosion and accumulation; as a result the morphology changed remarkably. The paleo-Thai Binh river had been inactive until 5,500 BP and then it was active but the morphology had not varied remarkably. The recent coastline generated from Simclast is relatively in accordance with the present coastline.


Sign in / Sign up

Export Citation Format

Share Document