scholarly journals Biofuel Production from Waste Cooking Oils and its Physicochemical Properties in Comparison to Petrodiesel

2020 ◽  
Vol 8 (3) ◽  
pp. 87-94
Author(s):  
Ganesh Lamichhane ◽  
Sujan Khadka ◽  
Sanjib Adhikari ◽  
Niranjan Koirala ◽  
Dhruba Prasad Poudyal

Haphazard mining and consumption of fossil fuels have reduced petroleum reserves causing fossil fuel depletion and environmental degradation; thus, reflecting the need of the cheaper, renewable and eco-friendly alternative source of petroleum to meet the fuel demand. Million liters of edible oil used for cooking foods and date expired oils from oil manufacturers are discarded into sewage. This study primarily intends to study the feasibility of biodiesel production using such waste oils. In this work, biodiesel was prepared from waste cooking oils by a process called transesterification with NaOH as a catalyst. Our results showed that methyl ester (biodiesel) (92.67±0.90%), soap materials (1.33±0.224%) and glycerol (6±0.68%) were obtained after the transesterification of waste cooking oil. The physicochemical properties of biodiesel such as density, viscosity, volatility, surface tension and flashpoint were analyzed, which were found to be 0.862±0.006 g/cm3, 2.23±0.021 cP, 0.327×10-3±4.5×10-6 g/s, 32.03±0.138 dyne/cm, 169.67±0.810°C, respectively. These properties were compared with that of commercial diesel as well as with the values specified by the American Society for Testing and Materials (ASTM) D6751. The density and the surface tension of the biodiesel were found similar to that of petrodiesel but its volatility was 3 times lower. Fourier-transform infrared spectroscopy (FTIR) spectra of the biodiesel showed methyl ester functional group at 1436 cm-1. Based on the cost of the materials used for production, the cost of biodiesel was estimated to be about 81 Nepalese rupees (0.67 USD) per liter. The properties of biodiesel also met the standard values of ASTM D6751. These findings indicate that waste oil is one of the feasible biodiesel sources and it can be used as a suitable alternative to petrodiesel.

Author(s):  
Vinoth E

Biodiesel is receiving increased attention as an alternative, non-toxic, biodegradable and renewable diesel fuel and contributes a minimum amount of net greenhouse gases, such as CO2, SO2 and NO emissions to the atmosphere. Exploring new energy resources, such as biofuel is of growing importance in recent years. The possibility of obtaining oil from plant resources has created a great importance in several countries. Vegetable oil after esterification being used as bio diesel, Considering the cost and demand of the edible oil is bearable, so it may be preferred for the preparation of bio diesel in India.  The transesterification of waste cooking oils with methanol as well as the main uses of the fatty acid methyl esters are reviewed. The general aspects of this process and the applicability of different types of catalysts (acids, alkaline metal hydroxides, alkoxides and carbonates, enzymes and non-ionic bases, such as amines, amides, and guanidine and triamino (imino) phosphoranes) are described. Transesterification is carried in a reaction cavity, once the reaction is complete, glycerine and biodiesel are gravity separated.   


2020 ◽  
pp. 118-125
Author(s):  
Esraa M. Abd El-halim ◽  
Mennatullah M. Moustafa ◽  
Alaa A. Mahmoud ◽  
Hager S. Ahmed ◽  
Emad A. Shalaby

The problem of fossil fuel increases by time around the world, Biodiesel is an environmentally friend renewable diesel fuel alternative. The present work aims to determine the possibility for biofuel production from non-edible plant (Water hyacinth) and waste cooking oils in addition to potential uses as source for glycerol, pigments and antioxidant compound sources. this study aimed to investigate the feasibility of biodiesel production from water hyacinth using two solvent systems (chloroform: methanol, 2:1v/v and Hexane), Moreover, WCO applying one steps alkaline transesterification process using methanol, NaOH (0.25) and KOH (0.25, 0.5 and 1g) as a catalyst and hot distilled water for purification. both produced biodiesel (from Eichhornia and WCO) was characterized using FTIR and some chemical constant such as IV, SV and AV. The highest biodiesel produced from Eichhornia recorded with chloroform: methanol system when compared with Hexane. However, the highest biodiesel produced from WCO was recorded when using KOH (0.25g). Also, the obtained results reported the possibility for use glycerol produced from the both biofuel sources in body butter (makhmaria) production, Authors concluded that, the produced biodiesel from both sources was within the recommended standards of biodiesel fuel. Also, water hyacinth became useful in antioxidant compounds production, the contained pigments may be used as natural coloring substances in different fields.


2020 ◽  
Vol 1 (1) ◽  
pp. 53-71
Author(s):  
J. C. Nnaji

Biodiesel is a renewable, clean-burning, and biodegradable fuel which can be synthesized from readily available domestic and natural sources, such as edible, non-edible and waste cooking oils, which may serve as a substitute to petro-diesel. It is produced by catalytic transesterification of fats and oils. A number of researches has been devoted to discovering a benign catalyst, especially heterogeneous acid catalyst that could convert non-edible and waste cooking oils with high free fatty acid into biodiesel, in an attempt to reduce the cost of production. The cost of production of biodiesel is still far higher than that of conventional petro-diesel, owing to the cost of edible oil currently being used, processes involved, and cost of conventional heterogeneous catalysts employed. This study assessed the role of various catalysts; homogeneous, heterogenous and enzyme-catalyzed transesterification reactions, in terms of their advantages and disadvantages in biodiesel production in order to establish very promising catalysts. Some methods of heterogeneous acid catalysts were also highlighted. Amongst the common heterogeneous catalyst, carbon-based solid acid catalysts were recommended as very promising solid acid catalyst that can utilize the non-edible oils in biodiesel production. The advantages of carbon-based solid acid catalysts include cheap readily available raw materials for their synthesis, easier production processes, relative stability, high reusability and potential for utilizing waste and non-edible oils for biodiesel production.  Nnaji, J. C. | Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria


2021 ◽  
Vol 12 (2) ◽  
pp. 141-143
Author(s):  
I.S. Ibrahim ◽  
I.T. Abdullahi ◽  
F.Y. Muhammad

Biodiesel is derived from triglycerides by transesterification reaction with alcohol (ethanol or methanol), and has classified as a renewable, biodegradable, and nontoxic fuel. Several methods for biodiesel production have been developed, among which transesterification using alkali-catalysis gives high levels of conversion of triglycerides to their corresponding methyl esters in short reaction times. This study was conducted to extract the neem and Jatropha oil for the production of biodiesel using alkali-catalyzed reaction The samples were subjected to reaction with sodium hydroxide (NaOH), 0.2:1 w/v methanol (MeOH) to oil mole ratio, reaction temperature of 6°C, and 30 min reaction time. The final biodiesel yield obtained was 47.5% and 45.5% from the neem and the jaropha oil sample respectively. The basic physicochemical properties of the jatropha methyl ester produced from both jatropha oil samples were found to be within the ASTM D6751 specified limits.


2018 ◽  
Vol 8 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Tanzer Eryilmaz

In this study, the methyl ester production process from neutralized waste cooking oils is optimized by using alkali-catalyzed (KOH) single-phase reaction. The optimization process is performed depending on the parameters, such as catalyst concentration, methanol/oil ratio, reaction temperature and reaction time. The optimum methyl ester conversion efficiency was 90.1% at the optimum conditions of 0.7 wt% of potassium hydroxide, 25 wt% methanol/oil ratio, 90 min reaction time and 60°C reaction temperature. After the fuel characteristics of the methyl ester obtained under optimum conditions were determined, the effect on engine performance, CO and NOx emissions of methyl ester was investigated in a diesel engine with a single cylinder and direct injection. When compared to diesel fuel, engine power and torque decreased when using methyl ester, and specific fuel consumption increased. NOx emission increases at a rate of 18.4% on average through use of methyl ester.


2021 ◽  
pp. 20-27
Author(s):  
Ngee Sing Chong ◽  
Francis Uchenna Okejiri ◽  
Saidi Abdulramoni ◽  
Shruthi Perna ◽  
Beng Guat Ooi

Due to the high cost of feedstock and catalyst in biodiesel production, the viability of the biodiesel industry has been dependent on government subsidies or tax incentives. In order to reduce the cost of production, food wastes including eggshells and oyster shells have been used to prepare calcium oxide (CaO) catalysts for the transesterification reaction of biodiesel synthesis. The shells were calcined at 1000 °C for 4 hours to obtain CaO powders which were investigated as catalysts for the transesterification of waste cooking oil. The catalysts were characterized by Fourier Transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and X-ray fluorescence (XRF) spectroscopy. Reaction parameters such as methanol-to-oil molar ratio, CaO catalyst concentration, and reaction time were evaluated and optimized for the percentage conversion of cooking oil to biodiesel esters. The oyster-based CaO showed better catalytic activity when compared to the eggshell-based CaO under the same set of reaction conditions.


Author(s):  
Muzhda Azizi ◽  
Sweeta Akbari

Nowadays, preservation of natural resources on earth is one of the most important concerns of humanity. In this regard, increasing the consumption of energy is one of the most critical challenges that humans are facing. Because, on the one hand, the untapped use of different sources of energy from fossil fuels can destroy this natural resource and, on the other hand, pollution from the use of these resources is a serious threat to the environment. Recent research suggests that affordable, sustainable and environmentally friendly fuels, which can be a good alternative to fossil fuels, have become more important. Therefore, biodiesel has made it possible to release less greenhouse gas emission and low toxicity emissions, which can partly meet fuel requirements and is the best alternative for petroleum diesel. In addition, the waste cooking oils are a major source of biodiesel for their essential compounds, such as glycerol. The use of waste cooking oils can reduce biodiesel production cost by 60 to 90 percent. Therefore, the main objective of this review is to study the production of biodiesel using transesterification reaction of waste cooking oil as an alternative fuel to petroleum diesel that can be used easily in diesel engines.


Fuel ◽  
2018 ◽  
Vol 216 ◽  
pp. 296-300 ◽  
Author(s):  
Mahtab Pirouzmand ◽  
Mehri Mahdavi Anakhatoon ◽  
Zarrin Ghasemi

Sign in / Sign up

Export Citation Format

Share Document