scholarly journals STUDYING THE MECHANICAL PROPERTIES OF HYBRID COMPOSITES USING NATURAL ADDITIVES WITH EPOXY

2022 ◽  
Vol 26 (1) ◽  
pp. 15-26
Author(s):  
Hisham A. Chlob ◽  
◽  
Raad M. Fenjan ◽  

The fundamental goal of the present study is to study the effects of the natural additives with vegetable and animal sources in form (i.e. the short fibers and particle) on mechanical characteristics epoxy. (The wood dust WD, cow bones CB, date palm fiber DP, and sheep wool SW) have been chosen as natural additives with a variety of the weight ratio reinforcements for epoxy matrix, which is based upon the hybrid composites that have been produced by hand lay-up approach. Tensile, compression and flexural tests have been performed based on the American society for the testing and materials (ASTM) for the characterization of hybrid composites it has been discovered that mechanical characteristics may be increased or decreased according to the material additive type, its origins, and the utilized percentage of weight.

2021 ◽  
Vol 25 (Special) ◽  
pp. 2-135-2-145
Author(s):  
Hisham A. Chlob ◽  
◽  
Raad M. Fenjan ◽  

The goal of the present study is investigating effects of the natural additives from a vegetarian and animal source in a form (short fiber and particles) on hardness and thermal conductivity in composites materials. (jam Wood dust JWD, cow bones CB, date palm fiber DP, as well as sheep wool SW) have been chosen as natural additives with a variety of the reinforcements of weight fraction for epoxy matrix based that have been produced by hand lay-up approach. Thermal conductivity and hardness tests have been conducted based on the American society for the testing and materials (ASTM) for the characterization of hybrid composites it has been discovered that thermal conductivity and hardness may be decreased or increased according to the material additive type, its origin, and weight percentage utilized. %2.5 material (1) + %2.5 material (2), %2.5 material (1) + %5 material (2), %5 material (1) + %2.5 material (2).


Nowadays polymer composites are emerged material which is used for extensive variety of applications because of their exclusive and beautiful characters. They have high durability, high strength-to-weight ratio and abrasion resistance. In this study the mechanical characteristics of coir and wood dust particle reinforced polyester composites using hand layup process were analyzed. The prepared composites were characterized using Scanning Electron Microscope and also the mechanical behaviors such as tensile strength and flexural strength were estimated using computerized testing machine


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


2020 ◽  
Author(s):  
Vinod V. Rampur ◽  
Ashok R. Banagar ◽  
U. L. Ganesh ◽  
C. V. Srinivas ◽  
S. C. Reur.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 992
Author(s):  
Suchitha Devadas ◽  
Saja M. Nabat Al-Ajrash ◽  
Donald A. Klosterman ◽  
Kenya M. Crosson ◽  
Garry S. Crosson ◽  
...  

Lignin macromolecules are potential precursor materials for producing electrospun nanofibers for composite applications. However, little is known about the effect of lignin type and blend ratios with synthetic polymers. This study analyzed blends of poly(acrylonitrile-co-methyl acrylate) (PAN-MA) with two types of commercially available lignin, low sulfonate (LSL) and alkali, kraft lignin (AL), in DMF solvent. The electrospinning and polymer blend solution conditions were optimized to produce thermally stable, smooth lignin-based nanofibers with total polymer content of up to 20 wt % in solution and a 50/50 blend weight ratio. Microscopy studies revealed that AL blends possess good solubility, miscibility, and dispersibility compared to LSL blends. Despite the lignin content or type, rheological studies demonstrated that PAN-MA concentration in solution dictated the blend’s viscosity. Smooth electrospun nanofibers were fabricated using AL depending upon the total polymer content and blend ratio. AL’s addition to PAN-MA did not affect the glass transition or degradation temperatures of the nanofibers compared to neat PAN-MA. We confirmed the presence of each lignin type within PAN-MA nanofibers through infrared spectroscopy. PAN-MA/AL nanofibers possessed similar morphological and thermal properties as PAN-MA; thus, these lignin-based nanofibers can replace PAN in future applications, including production of carbon fibers and supercapacitors.


2017 ◽  
Vol 3 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Alexander Brensing ◽  
Roman Ruff ◽  
Benjamin Fischer ◽  
Sascha L. Wien ◽  
Klaus-Peter Hoffmann

Abstract:The usability of flexible electrodes in moving environment is limited due to different mechanical characteristics of their metallic and polymeric components. To achieve structure compatible electrodes, all used materials need to have similar Young’s moduli as the surrounding tissue. This paper describes the characterization of macroscopic as well as miniaturized electrodes entirely made out of modified silicone (PDMS). Electrochemical, mechanical, biological, optical, and applicative methods were used. It could be shown, that PDMS electrodes are capable to be used for recording electrocardiograms with similar form and amplitude as with standard electrodes.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 616
Author(s):  
Ján Kruželák ◽  
Andrea Kvasničáková ◽  
Klaudia Hložeková ◽  
Rastislav Dosoudil ◽  
Marek Gořalík ◽  
...  

In the present work, composite materials were prepared by incorporation of manganese-zinc ferrite, carbon black and combination of ferrite and carbon black into acrylonitrile-butadiene rubber (NBR). For cross-linking of composites, standard sulfur-based curing system was applied. The main goal was to investigate the influence of the fillers on the physical-mechanical properties of composites. Then, the electromagnetic absorption shielding ability was investigated in the frequency range 1 MHz–3 GHz. The results revealed that composites filled with ferrite provide sufficient absorption shielding performance in the tested frequency range. On the other hand, ferrite behaves as an inactive filler and deteriorates the physical-mechanical characteristics of composites. Carbon black reinforces the rubber matrix and contributes to the improvement of physical-mechanical properties. However, composites filled with carbon black are not able to absorb electromagnetic radiation in the given frequency range. Finally, the combination of carbon black and ferrite resulted in the modification of both physical-mechanical characteristics and absorption shielding ability of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document