tissue production
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 12)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 8 (7) ◽  
pp. 99
Author(s):  
Christophe Caneparo ◽  
David Brownell ◽  
Stéphane Chabaud ◽  
Stéphane Bolduc

Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tisha E Bohr ◽  
Divya A Shiroor ◽  
Carolyn E Adler

In order to regenerate tissues successfully, stem cells must detect injuries and restore missing cell types through largely unknown mechanisms. Planarian flatworms have an extensive stem cell population responsible for regenerating any organ after amputation. Here, we compare planarian stem cell responses to different injuries by either amputation of a single organ, the pharynx, or removal of tissues from other organs by decapitation. We find that planarian stem cells adopt distinct behaviors depending on what tissue is missing to target progenitor and tissue production towards missing tissues. Loss of non-pharyngeal tissues only increases non-pharyngeal progenitors, while pharynx removal selectively triggers division and expansion of pharynx progenitors. By pharmacologically inhibiting either mitosis or activation of the MAP kinase ERK, we identify a narrow window of time during which stem cell division and ERK signaling produces pharynx progenitors necessary for regeneration. These results indicate that planarian stem cells can tailor their output to match the regenerative needs of the animal.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 4221-4236
Author(s):  
Magdalena Kmiotek ◽  
Katarzyna Dybka-Stępień ◽  
Anna Karmazyn

Effects of cellulase enzymatic treatment followed by mechanical beating were evaluated relative to the properties of cellulase-derived tissue pulps and handsheets. When different cellulase concentrations (0.0012 FPU/g, 0.0018 FPU/g, and 0.0024 FPU/g) of oven dried pulp (a 65/35 w/w ratio of beech to eucalyptus) were used for tissue production, a slight deterioration of the morphological characteristics was observed. Thus, a possibility of controlling the changes in the degree of polymerization of cellulose, as well as the fiber properties (in particular the length and coarseness) appeared. With an increased treatment time and enzyme concentration, these effects increased. The enzyme activity did not affect the apparent density of the paper, but the porosity drastically increased. The zero-span strength of the enzymatically treated pulps decreased with an increase in treatment time and amount of cellulase. However, mechanical beating improved the bonding between the cellulase fibers, which helped prevent the eventual decrease in mechanical properties of the handsheets. With the use of cellulase, the proposed moderate changes to fiber structure were achieved, giving the possibility of predicting and controlling the properties of tissue paper.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yoshitake Akiyama ◽  
Akemi Nakayama ◽  
Shota Nakano ◽  
Ryuichiro Amiya ◽  
Jun Hirose

Low-labor production of tissue-engineered muscles (TEMs) is one of the key technologies to realize the practical use of muscle-actuated devices. This study developed and then demonstrated the daily maintenance-free culture system equipped with both electrical stimulation and medium replacement functions. To avoid ethical issues, immortal myoblast cells C2C12 were used. The system consisting of gel culture molds, a medium replacement unit, and an electrical stimulation unit could produce 12 TEMs at one time. The contractile forces of the TEMs were measured with a newly developed microforce measurement system. Even the TEMs cultured without electrical stimulation generated forces of almost 2 mN and were shortened by 10% in tetanic contractions. Regarding the contractile forces, electrical stimulation by a single pulse at 1 Hz was most effective, and the contractile forces in tetanus were over 2.5 mN. On the other hand, continuous pulses decreased the contractile forces of TEMs. HE-stained cross-sections showed that myoblast cells proliferated and fused into myotubes mainly in the peripheral regions, and fewer cells existed in the internal region. This must be due to insufficient supplies of oxygen and nutrients inside the TEMs. By increasing the supplies, one TEM might be able to generate a force up to around 10 mN. The tetanic forces of the TEMs produced by the system were strong enough to actuate microstructures like previously reported crawling robots. This daily maintenance-free culture system which could stably produce TEMs strong enough to be utilized for microrobots should contribute to the advancement of biohybrid devices.


2021 ◽  
Vol 7 ◽  
Author(s):  
Karin Kvale ◽  
Wolfgang Koeve ◽  
Nadine Mengis

The impact of calcifying phytoplankton on atmospheric CO2 concentration is determined by a number of factors, including their degree of ecological success as well as the buffering capacity of the ocean/marine sediment system. The relative importance of these factors has changed over Earth's history and this has implications for atmospheric CO2 and climate regulation. We explore some of these implications with four “Strangelove” experiments: two in which soft-tissue production and calcification is stopped, and two in which only calcite production is forced to stop, in idealized icehouse and greenhouse climates. We find that in the icehouse climate the loss of calcifiers compensates the atmospheric CO2 impact of the loss of all phytoplankton by roughly one-sixth. But in the greenhouse climate the loss of calcifiers compensates the loss of all phytoplankton by about half. This increased impact on atmospheric CO2 concentration is due to the combination of higher rates of pelagic calcification due to warmer temperatures and weaker buffering due to widespread acidification in the greenhouse ocean. However, the greenhouse atmospheric temperature response per unit of CO2 change to removing ocean soft-tissue production and calcification is only one-fourth that in an icehouse climate, owing to the logarithmic radiative forcing dependency on atmospheric CO2 thereby reducing the climate feedback of mass extinction. This decoupling of carbon cycle and temperature sensitivities offers a mechanism to explain the dichotomy of both enhanced climate stability and destabilization of the carbonate compensation depth in greenhouse climates.


Author(s):  
R. Menaka ◽  
R. Ramesh ◽  
R. Dhanagopal

Background: Osteoporosis is a term used to represent the reduced bone density which is caused by insufficient bone tissue production to balance the old bone tissue removal. Medical Imaging procedures such as X-Ray, Dual X-Ray and Computed Tomography (CT) scans are used widely in osteoporosis diagnosis. There are several existing procedures are in practice to assist osteoporosis diagnosis which can operate using a single imaging method. Objective: The purport of this proposed work is to introduce a framework to assist the diagnosis of osteoporosis based on consenting all these X-Ray, Dual X-Ray and CT scan imaging techniques. The proposed work named as "Aggregation of Region-based and Boundary-based Knowledge biased Segmentation for Osteoporosis Detection from X-Ray, Dual X-Ray and CT images" (ARBKSOD) which is the integration of three functional modules. Methods: Fuzzy Histogram Medical Image Classifier (FHMIC), Log-Gabor Transform based ANN Training for osteoporosis detection (LGTAT) and Knowledge biased Osteoporosis Analyzer (KOA). Results: Together, all these three modules make the proposed method ARBKSOD scored the maximum accuracy of 93.11% , the highest precision value of 93.91% while processing the 6th image batch, the highest sensitivity of 92.93%., The highest specificity 93.79% is observed during the experiment by ARBKSOD while processing the 6th image batch. The best average processing time of 10244 mS is achieved by ARBKSOD while processing the 7th image batch. Conclusion: Together, all these three modules make the proposed method ARBKSOD to produce better result.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 641-649
Author(s):  
JOSHUA OMAMBALA ◽  
CARL MCINTYRE

The vast majority of tissue production uses creping to achieve the required set of properties on the base sheet. The Yankee coating helps to develop the desired crepe that in turn determines properties such as bulk and softness. The adhesion of the sheet to the Yankee surface is a very important characteristic to consider in achieving the desired crepe. The coating mix usually consists of the adhesive, modifier, and release. A good combination of these components is essential to achieving the desired properties of the tissue or towel, which often are determined by trials on the machine that can be time consuming and lead to costly rejects. In this paper, five compositions of an industrial Yankee coating adhesive, modifier, and release were examined rheologically. The weight ratio of the adhesive was kept constant at 30% in all five compositions and the modifier and release ratios were varied. The normal force and work done by the different compositions have been shown at various temperatures simulating that of the Yankee surface, and the oscillatory test was carried out to explain the linear and nonlinear viscoelastic characteristic of the optimal coating composition.


Author(s):  
Melanie Krüger ◽  
Bart Spee ◽  
Andreas Walther ◽  
Laura De Laporte ◽  
Linda M. Kock

Abstract Nanofibrillar cellulose as a naturally biocompatible scaffold material is very promising for tissue engineering. It is shear thinning but has the downside of not being degradable in animals, it can only be degraded by cellulase enzymes. In this study, a newly developed bioreactor was used to culture fibroblast spheroids under flow conditions inside nanocellulose hydrogels with and without the presence of cellulase. The aim was to control the tissue size and ideally find a match between degradation and tissue formation within this promising material. Both the concentration of cellulase and the flow rate were varied and their influence on the activity and growth of fibroblast clusters was assessed. Cluster diameters, degradation, metabolic activity, and tissue production increase with higher cellulase concentration, although concentrations above 1 g/l does not have an additional benefit. Flow leads to more viable cells, more proliferation and migration, leading to overall larger tissue constructs compared to static conditions. This is most likely due to the shear thinning effect of flow on cellulose nanofibrils (CNFs) in addition to the increased nutrient supply through perfusion. At a constant cellulase concentration of 1 g/l, a flow of 2 ml/min proved to be optimal for tissue production. Therefore, degradation in combination with flow leads to more effective tissue production in CNF hydrogels, which is a very potent scaffold material for tissue engineering.


2019 ◽  
Vol 51 ◽  
pp. 15-21 ◽  
Author(s):  
Min-Hao Chiang ◽  
Thomas Greb
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document