scholarly journals ANALYSIS OF ENERGY CONSUMPTION STRUCTURE OF A SCIENCE AND ENGINEERING UNIVERSITY CAMPUS IN SOUTHERN CHINA

2012 ◽  
Vol 77 (675) ◽  
pp. 399-407 ◽  
Author(s):  
Yuan SU ◽  
Hiroto TAKAGUCHI ◽  
Junwei YAN
2013 ◽  
Vol 368-370 ◽  
pp. 1222-1227 ◽  
Author(s):  
Yuan Su ◽  
Jun Wei Yan

Nowadays, universities are taking responsibility for their environmental impact and are working to ensure environmental sustainability. In this research, we aim to analyze energy system of a model university campus in southern China and grasp the energy consumption of the whole campus from the viewpoint of reducing GHG emission. We investigated and analyzed the present situation of energy system by using measured data and inquiry survey. In order to grasp the data exactly, we introduced building energy management system (BEMS) to some typical buildings with electricity consumption controlling. Then examination of energy consumption intensity according the different typical buildings has been analyzed on the basis of the research at campus. The campus's energy consumption prediction was carried out during the 24-h field measurements period. Furthermore, energy consumption intensity of the whole campus were predicted.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 196 ◽  
Author(s):  
Lihui Zhang ◽  
Riletu Ge ◽  
Jianxue Chai

China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment.


2012 ◽  
Vol 524-527 ◽  
pp. 3079-3082
Author(s):  
Di Ping Zhang ◽  
Shuang Shuang He ◽  
Gao Qing Li

Taking Zhejiang province as an example, this paper conducted a comparative analysis on the current situation of the energy consumption structure from the vertical and horizontal using the descriptive statistical method. By calculating some indexes such as energy consumption per unit GDP, energy consumption elasticity coefficient, and so on, the study analyzes and evaluates the present situation, trend and influence factors of energy efficiency. Finally, it puts forward some policy suggestions about the optimization of energy consumption structure and energy efficiency.


Author(s):  
Murizah Kassim ◽  
Maisarah Abdul Rahman ◽  
Cik Ku Haroswati Che Ku Yahya ◽  
Azlina Idris

This paper presents a research on electric power monitoring prototype mobile applications development on energy consumptions in a university campus. Electric power energy consumptions always are the issue of monitoring usage especially in a broad environment. University campus faces high used of electric power, thus crucial analysis on cause of the usage is needed. This research aims to analyses electric power usage in a university campus where implemented of few smart meters is installed to monitor five main buildings in a campus university. A Monitoring system is established in collecting electric power usage from the smart meters. Data from the smart meter then is analyzed based on energy consume on 5 buildings. Results presents graph on the power energy consume and presented on mobile applications using Live Code coding. The methodology involved the setup of the smart meters, monitoring and data collected from main smart meters, analyzed electrical consumptions for 5 buildings and mobile system development to monitor. A Live Code mobile app is designed then data collected from smart meter using ION software is published in graphs. Results presents the energy consumed for 5 building during day and night. Details on maximum and minimum energy consumption presented that show load of energy used in the campus. Result present Tower 1 saved most eenergy at night which is 65% compared to block 3 which is 8% saved energy although block 3 presents the lowest energy consumption in the working hours and non-working hours. This project is significant that can help campus facility to monitor electric power used thus able to control possible results in future implementations.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
David Palchak ◽  
Siddharth Suryanarayanan ◽  
Daniel Zimmerle

This paper presents an artificial neural network (ANN) for forecasting the short-term electrical load of a university campus using real historical data from Colorado State University. A spatio-temporal ANN model with multiple weather variables as well as time identifiers, such as day of week and time of day, are used as inputs to the network presented. The choice of the number of hidden neurons in the network is made using statistical information and taking into account the point of diminishing returns. The performance of this ANN is quantified using three error metrics: the mean average percent error; the error in the ability to predict the occurrence of the daily peak hour; and the difference in electrical energy consumption between the predicted and the actual values in a 24-h period. These error measures provide a good indication of the constraints and applicability of these predictions. In the presence of some enabling technologies such as energy storage, rescheduling of noncritical loads, and availability of time of use (ToU) pricing, the possible demand-side management options that could stem from an accurate prediction of energy consumption of a campus include the identification of anomalous events as well the management of usage.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3135 ◽  
Author(s):  
Carolina Del-Valle-Soto ◽  
Leonardo J. Valdivia ◽  
Ramiro Velázquez ◽  
Luis Rizo-Dominguez ◽  
Juan-Carlos López-Pimentel

Presently, the Internet of Things (IoT) concept involves a scattered collection of different multipurpose sensor networks that capture information, which is further processed and used in applications such as smart cities. These networks can send large amounts of information in a fairly efficient but insecure wireless environment. Energy consumption is a key aspect of sensor networks since most of the time, they are battery powered and placed in not easily accessible locations. Therefore, and regardless of the final application, wireless sensor networks require a careful energy consumption analysis that allows selection of the best operating protocol and energy optimization scheme. In this paper, a set of performance metrics is defined to objectively compare different kinds of protocols. Four of the most popular IoT protocols are selected: Zigbee, LoRa, Bluethooth, and WiFi. To test and compare their performance, multiple sensors are placed at different points of a university campus to create a network that can accurately simulate a smart city. Finally, the network is analyzed in detail using two different schemes: collaborative and cooperative.


Sign in / Sign up

Export Citation Format

Share Document