scholarly journals INFLUENCE OF HIGH TEMPERATURE CURING IN AN EARLY AGE ON STRENGTH DEVELOPMENT OF CONCRETE USING HIGH-EARLY-STRENGTH PORTLAND CEMENT AND LOW HEAT PORTLAND CEMENT

Author(s):  
Hisashi SUGIYAMA ◽  
Yoshihiro MASUDA
Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 816
Author(s):  
Yuli Wang ◽  
Huijuan Lu ◽  
Junjie Wang ◽  
Hang He

In order to improve the early age strength of ordinary Portland cement-based materials, many early strength agents were applied in different conditions. Different from previous research, the nano calcium silicate hydrate (C-S-H) particles used in this study were synthesized through the chemical reaction of CaO, SiO2, and H2O under 120 °C using the hydrothermal method, and the prepared nano C-S-H particles were highly crystalized. The influences of different amounts of nano C-S-H particles (0%, 0.5%, 1%, 2% and 3% by weight of cement) on the setting time, compressive strength, and hydration heat of cement paste were studied. The hydration products and microstructure of the cement paste with different additions of nano C-S-H particles were investigated through thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffraction (XRD), and scanning electron microscope (SEM) tests. The results show that the nano C-S-H particles could be used as an early strength agent, and the early strength of cement paste can be increased by up to 43% through accelerating the hydration of tricalcium silicate (C3S). However, the addition of more than 2% nano C-S-H particles was unfavorable to the later strength development due to more space being left during the initial accelerated hydration process. It is suggested that the suitable content of the nano C-S-H particles is 0.5%−1% by weight of cement.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985194 ◽  
Author(s):  
Jianping Zhu ◽  
Genshen Li ◽  
Ruijie Xia ◽  
Huanhuan Hou ◽  
Haibin Yin ◽  
...  

Nanomaterial, as a new emerging material in the field of civil engineering, has been widely utilized to enhance the mechanical properties of cementitious material. Nano-SnO2 has presented high hardness characteristics, but there is little study of the application of nano-SnO2 in the cementitious materials. This study mainly investigated the hydration characteristics and strength development of Portland cement paste incorporating nano-SnO2 powders with 0%, 0.08%, and 0.20% dosage. It was found that the early-age compressive strength of cement paste could be greatly improved when nano-SnO2 was incorporated with 0.08% dosage. The hydration process and microstructure were then measured by hydraulic test machine, calorimeter, nanoindentation, X-ray diffraction, scanning electron microscope, and mercury intrusion porosimetry. It was found that the cement hydration process was promoted by the addition of nano-SnO2, and the total amount of heat released from cement hydration is also increased. In addition, the addition of nano-SnO2 can promote the generations of high density C-S-H and reduce the generations of low density C-S-H indicating the nucleation effect of nano-SnO2 in the crystal growth process. The porosity and probable pore diameter of cement paste with 0.08% nano-SnO2 were decreased, and the scanning electron microscopic results also show that the cement paste with 0.08% nano-SnO2 promotes the densification of cement microstructure, which are consistent with the strength performance.


2014 ◽  
Vol 584-586 ◽  
pp. 1551-1557
Author(s):  
Noor Azline Mohd Nasir ◽  
M.J. McCarthy

The article reports a laboratory experimental programme that investigated effect of metakaolin on the early strength of concrete made with ternary combinations of Portland cement (CEM I) with ground granulated blast slag (GGBS) and metakaolin (MK). The various level of cement combinations (65%CEM I+30%GGBS+5%MK, 45%CEM I+45%GGBS+10%MK and 45%CEM I+40%GGBS+15%MK) was examined in comparison to CEM I and equivalent GGBS binary concretes for up to 28 days. Results show that the reduction in early strength is greater with the higher cement replacement level. However, the ternary concrete containing 15%MK has minor increase in early strength compared to those with 10%MK but a significant increase in strength is examined at later age (28 days). It is concluded that the presence of MK compensates the adverse effect of GGBS at early strength development and improves the strength at later ages.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4999
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Yuko Ogawa

To improve the strength of cement-treated sand effectively, the use of various cement types was investigated at different curing temperatures and compared with the results obtained from similar mortars at higher cement contents. The compressive strengths of cement-treated sand specimens that contained high early-strength Portland cement (HPC) cured at elevated and normal temperatures were found to be higher than those of specimens that contained ordinary Portland cement (OPC) and moderate heat Portland cement at both early and later ages. At 3 days, the compressive strength of the HPC-treated sand specimen, normalized with respect to that of the OPC under normal conditions, is nearly twice the corresponding value for the HPC mortar specimens with water-to-cement ratio of 50%. At 28 days, the normalized value for HPC-treated sand is approximately 1.5 times higher than that of mortar, with a value of 50%. This indicates that the use of HPC contributed more to the strength development of the cement-treated sand than to that of the mortar, and the effects of HPC at an early age were higher than those at a later age. These trends were explained by the larger quantity of chemically bound water observed in the specimens that contained HPC, as a result of their greater alite contents and porosities, in cement-treated sand. The findings of this study can be used to ensure the desired strength development of cement-treated soils by considering both the curing temperature and cement type. Furthermore, they suggested a novel method for producing a high internal temperature for promoting the strength development of cement-treated soils.


2020 ◽  
Vol 17 (2) ◽  
pp. 1032-1036
Author(s):  
Nur Nadhira Abdul Rasid ◽  
Abdul Rahman Mohd. Sam ◽  
Azman Mohamed ◽  
Nor Hasanah Abdul Shukor Lim ◽  
Zaiton Abdul Majid ◽  
...  

Blended concrete has later strength development with long maturity strength development. An accelerator is thus needed to enhance the early strength development of concrete. This paper shows the combination of ground palm oil fuel ash and eggshell powder that was designed for later and early strength development, respectively. Two types of eggshell powder were utilised in concrete: uncarbonised eggshell powder and decarbonised eggshell powder. The study was initiated with compression test for concrete curing at age 1, 3, 7, and 28 days followed by rapid evaluation test of setting time to investigate the preliminary performance between materials. The results revealed decarbonised eggshell powder as a high accelerator that can improve the early age of concrete strength development. Meanwhile, despite showing the best performance, uncarbonised eggshell powder is a very low accelerator thus not fit the purpose. In conclusion, the combination of ground palm oil fuel ash (rich with silica oxide) and decarbonised eggshell powder (rich with calcium oxide) provided dual function, where ground palm oil fuel ash and decarbonised eggshell powder took later and early strength development, respectively. The combination between silica oxide and calcium oxide in cementitious materials has potential to be utilised to enhance the early age of a blended concrete strength development.


2018 ◽  
Vol 195 ◽  
pp. 01006
Author(s):  
Lanh Si Ho ◽  
Kenichiro Nakarai ◽  
Kenta Eguchi ◽  
Takashi Sasaki ◽  
Minoru Morioka

This study aimed to investigate the strength development of cement-treated sand using different cement types: ordinary Portland cement (OPC), high early strength Portland cement (HPC), and moderate heat Portland cement (MPC) cured at different temperatures. The cementtreated sand specimens were prepared with 8% of cement content and cured under sealed conditions at 20οC and 40οC, and mortar specimens were also prepared for reference. The results showed that the compressive strength of cement-treated sand increased in order of MPC, OPC, and HPC under high curing temperatures. It was interesting that the compressive strength of the specimens using HPC was much larger than that of the specimen using OPC and MPC under 20οC due to the larger amount of chemically bound water. Additionally, it was revealed that under high curing temperatures, the pozzolanic reaction was accelerated in the cement-treated sand; this may be caused by the high proportions of sand in the mixtures.


2011 ◽  
Vol 194-196 ◽  
pp. 1085-1088
Author(s):  
Zhi Min He ◽  
Xiao Ju Shen ◽  
Jun Zhe Liu

The use of fly ashes for cement-replacement purposes, especially in high volumes, decreases rate of early strength development of the steam curing concrete. To resolve it, this paper developed a new steam-cured concrete incorporating fly ash and a chemical activator (gypsum). Experiments were conducted to investigate the mechanical properties at early and later ages of steam and standard curing concretes. The corresponding mechanism was also discussed by testing the microstructure of concretes. Results indicate that the demoulding compressive strength of steam curing concrete with 4% gypsum dosage can meet production requirements, and compressive strength of this concrete at later ages increase well. Compared with that of ordinary pure cement steam-cured concrete, concrete with 4% gypsum has a higher compressive strength gain rate. At an early age, addition of the gypsum can distinctly accelerate the extent of hydration of the steam curing fly ash cement systems, and thus the microstructure of concrete becomes denser. However, in standard curing condtion, the effect of gypsum is not distinct.


Sign in / Sign up

Export Citation Format

Share Document