scholarly journals STUDY ON INORGANIC COMPOSITE MATERIALS AS BUILDING MATERIALS : Part 3 Gypsum as The Matrix Phase in Composite Materials ; Mechanical Properties

1977 ◽  
Vol 256 (0) ◽  
pp. 1-6
Author(s):  
KOICHI KISHITANI ◽  
TAKAYUKI HIRAI
1999 ◽  
Author(s):  
Y. Schmitt ◽  
C. Paulick ◽  
Y. Bour ◽  
F. X. Royer

Abstract The control of the quality of mixture based on very short carbon fibers and epoxyde resins leads to suitable mixture for molding of complex geometries. A gain in fluidity is obtained if the suspensions are treated by ultrasounds and simultaneously stirred under vacuum. Addition in a very small ratio of microbubbles in the mixture allows to obtain a viscosity less than those of the matrix alone. For many polymer materials the gain of fluidity can be of 20 to 25% with size and concentration of the microspheres thoroughly chosen. A certain number of new resins is developped to elaborate composite materials with specific mechanical properties close to standard aluminium. Tensile test an ultimate stress are used to quantify the improvements of the mechanical properties. Fillers concentrations up to 30 % are obtained.


2021 ◽  
pp. 36-45
Author(s):  
E.I. Krasnov ◽  
◽  
V.M. Serpova ◽  
L.G. Khodykin ◽  
A.V. Gololobov ◽  
...  

Presents a literature review in the field of methods for strengthening titanium and its alloys by introducing various refractory particles into the matrix. The main problematic issues related to the chemical nature of refractory particles and titanium alloys that arise during hardening are briefly described. The main structural, physical and mechanical properties and morphology of such metal composite materials are described. The dependence of the influence of various refractory particles and their amount, as well as the effect of heat treatment on the physical and mechanical properties of microns based on titanium alloys, is presented.


2001 ◽  
Vol 691 ◽  
Author(s):  
T. Sakakibara ◽  
Y. Takigawa ◽  
K. Kurosawa

ABSTRACTWe prepared a series of (AgBiTe2)1−x(Ag2Te)x(0≤×≤1) composite materials by melt and cool down [1]. The Hall coefficient and the electrical conductivity were measured by the standard van der Pauw technique over the temperature range from 93K to 283K from which the Hall carrier mobility was calculated. Ag2Te had the highest mobility while the mobility of AgBiTe2was the lowest of all samples at 283K. However the mobility of the (AgBiTe2)0.125(Ag2Te)0.875composite material was higher than the motility of Ag2Te below 243K. It seems that a small second phase dispersed in the matrix phase is effective against the increased mobility.


2020 ◽  
Vol 992 ◽  
pp. 415-420
Author(s):  
I.V. Zaychenko ◽  
V.V. Bazheryanu ◽  
A.G. Kim

The article considers the problem of the effect of uneven curing caused by the temperature gradient across the thickness of the material on the anisotropy of the strength properties of polymer composite materials. The effect of catalysts on the curing of the epoxy binder EDT-69N, used for the manufacture of multilayer polymer composite materials, was studied. According to dielectric spectrometry, the accelerating effect of the selected compounds on the curing process of the EDT-69N epoxy binder during fiberglass molding has been proved. The possibility of controlling the curing process using catalysts to reduce the influence of the temperature gradient on the anisotropy of the strength properties of the matrix in the manufacture of polymer composite materials is shown.


2020 ◽  
Vol 27 (9) ◽  
Author(s):  
Behnaz Baghaei ◽  
Sam Compiet ◽  
Mikael Skrifvars

Abstract This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises preparing a 6 wt% cellulose solution by dissolving cellulose solution in a ionic liquid, 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were first embedded in the cellulose/IL solution followed by removal of the IL by washing to form the composite. The effect of reuse of the recovered IL by distillation was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Fabricated ACC composite laminates were further characterised regarding structure by scanning electron microscopy.


Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 534 ◽  
Author(s):  
Liu ◽  
Bai ◽  
Chen ◽  
Yuan

Cobalt-based alloy coatings and WC-Co-based ceramic–metal (cermet) coatings have been widely used because of their desirable mechanical properties and corrosion resistance. In this work, the influence of Co content on the microstructure, mechanical properties and cavitation erosion (CE) resistance were investigated. A cobalt-based alloy coating, a WC-12Co coating, and a WC-17Co cermet coating were deposited by high-velocity oxygen fuel (HVOF) spraying on 1Cr18Ni9Ti substrates. Results indicate that the cobalt-based alloy coating had the largest surface roughness because surface-bonded particles of lower plastic deformation were flattened. The existence of WC particles had led to an increase in hardness and improved the fracture toughness due to inhibit crack propagation. The pore appeared at the interface between WC particles, and the matrix phase had introduced an increase in porosity. With the increase in Co content, the cohesion between matrix friction and WC particles increased and then decreased the porosity (from 0.99% to 0.84%) and surface roughness (Ra from 4.49 to 2.47 μm). It can be concluded that the hardness had decreased (from 1181 to 1120 HV0.3) with a decrease in WC hard phase content. On the contrary, the fracture toughness increased (from 4.57 to 4.64 MPa∙m1/2) due to higher energy absorption in the matrix phase. The WC-12Co and WC-17Co coatings with higher hardness and fracture toughness exhibited better CE resistance than the cobalt-based alloy coating, increasing more than 20% and 16%, respectively. Especially, the WC-12Co coating possessed the best CE resistance and is expected to be applicable in the hydraulic machineries.


Sign in / Sign up

Export Citation Format

Share Document