scholarly journals Fractal model equation for spontaneous imbibition

2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 283
Author(s):  
D. Samayoa ◽  
L. A. Ochoa Ontiveros ◽  
L. Damián Adame ◽  
E. Reyes de Luna ◽  
L. Álvarez Romero ◽  
...  

A new analytic model of fractal imbibition in porous media is derived. The topological Hausdorff dimension is used as a fractal parameter inthe proposed model. The fractal formulation is based on the model introduced by Li and Zhao to predict the production rate by spontaneousimbibition. Cantor Tartans and Menger sponge fractals are used to simulate fractal porous media with different ramifications. Results ofillustrative examples are presented in the form of a set of curves, which reveal the features of enhanced oil recovery of the model underconsideration. The results are compared with the experimental behaviour found on core samples of previous publications.

Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Abstract Capillary impregnation of viscous fluids in porous media is useful in diagnostics, design of lab-on-chip devices and enhanced oil recovery. The impregnation of a wetting fluid in a homogeneous porous medium follows Washburn’s diffusive law. The diffusive dynamics predicts that, with the increase in permeability, the rate of spontaneous imbibition of a wetting fluid also increases. As most of the naturally occurring porous media are composed of hydrodynamically interacting layers having different properties, the impregnation in a heterogeneous porous medium is significantly different from a homogeneous porous medium. A Washburn like model has been developed in the past to predict the imbibition behavior in the layers for a hydrodynamically interacting three layered porous medium filled with a non-viscous resident phase. It was observed that the relative placement of the layers impacts the imbibition phenomena significantly. In this work, we develop a quasi one-dimensional lubrication approximation to predict the imbibition dynamics in a hydrodynamically interacting multi-layered porous medium. The generalized model shows that the arrangement of layers strongly affects the saturation of wetting phase in the porous medium, which is crucial for oil recovery and in microfluidic applications.


2014 ◽  
Vol 25 (07) ◽  
pp. 1450021 ◽  
Author(s):  
Mingchao Liang ◽  
Boming Yu ◽  
Li Li ◽  
Shanshan Yang ◽  
Mingqing Zou

In this paper, a fractal model for permeability of porous media is proposed based on Tamayol and Bahrami's method and the fractal theory for porous media. The proposed model is expressed as a function of the mean particle diameter, the length along the macroscopic pressure drop in the medium, porosity, fractal dimensions for pore space and tortuous capillaries, and the ratio of the minimum pore size to the maximum pore size. The relationship between the permeability near the wall and the dimensionless distance from the wall under different conditions is discussed in detail. The predictions by the present fractal model are in good agreement with available experimental data. The present results indicate that the present model may have the potential in comprehensively understanding the mechanisms of flow near the wall in porous media.


Author(s):  
Luong Duy Thanh

In this work, the fractal model for the streaming potential coefficient in porous media recently published has been examined by calculating the zeta potential from the measured streaming potential coefficient. Obtained values of the zeta potential are then compared with experimental data. Additionally, the variation of the streaming potential coefficient with fluid electrical conductivity is predicted from the model. The results show that the model predictions are in good agreement with the experimental data available in literature. The comparison between the proposed model and the Helmholtz-Smoluchowski (HS) equation is also carried out. It is seen that that the prediction from the proposed model is quite close to what is expected from the HS equation, in particularly at the high fluid conductivity or large grain diameters. Therefore, the model can be an alternative approach to obtain the zeta potential from the streaming potential measurements.


Fractals ◽  
2021 ◽  
Vol 29 (03) ◽  
pp. 2150162
Author(s):  
ZHAOQIN HUANG ◽  
XIN SU ◽  
YANCHAO LI ◽  
KAI ZHANG ◽  
JUN YAO

The stress-dependent flow and transport behaviors of porous media are ubiquitous in various scientific and engineering applications. It has been shown that the change of effective stress has important effects on the permeability and porosity of porous media. In this paper, a new stress sensitivity model for porous media is developed based on the fractal theory and the elasto-plastic thick-walled cylinder model. The proposed model is able to predict the elasto-plastic deformation of the fractal porous media under loading–unloading stress cycles, which plays a crucial role on the permanent variations of the permeability and porosity. It is found that the permeability of stress-sensitivity porous media is related to the capillary fractal dimension, capillary fractal tortuosity dimension, minimum and maximum capillary diameters, Young’s modulus and Poisson’s ratio of capillary. Each parameter has a clear physical meaning. The validity of the developed fractal model is verified by comparing the model predictions with the available experimental data.


2019 ◽  
Vol 89 ◽  
pp. 01005 ◽  
Author(s):  
Bergit Brattekås ◽  
Tore L. Føyen ◽  
Trond Vabø ◽  
Håkon Haugland ◽  
Simon I. Reite ◽  
...  

This paper describes the development of a consistent model system to measure spontaneous imbibition and determine saturation functions in unconsolidated porous media. Sand grains or glass beads were packed in up to 0.5 m long, transparent glass tubes with optical access to local saturation development during spontaneous imbibition processes. The Two Ends Open-Free spontaneous imbibition (TEOFSI) boundary condition was used, where one end face is exposed to the wetting fluid and the other end to the non-wetting fluid. Dynamic measurement of the advancing displacement front and volumetric production from each open end-face enabled estimation of capillary pressure and relative permeability for the system. A range of wetting- and non-wetting phase viscosities and viscosity ratios was used during spontaneous imbibition in unconsolidated sand or glass packs. Wetting phase (water) viscosity was increased using water soluble glycerol or polymers. Air or mineral oil of varying composition provided a wide range of non-wetting phase viscosities. High permeable systems are extremely sensitive to laboratory properties, which may dominate the viscous resistance and determine flow behaviour. Systematic discrepancies observed in early testing indicated that end effects were present, even in long systems, in the filters at each end of the glass tube to maintain the grains or beads in place. Different filters were tested (no filter, glass, paper and micro-porous discs) to determine the impact of the filter on spontaneous imbibition. In addition to slower oil recovery than anticipated, developmentof a non-uniform displacement front was observed, demonstrating the large influence from minute heterogeneities within the packs, and at the end faces. A standard sand grain packing procedure, using a custom-designed packing device, was therefore developed to ensure homogeneous properties throughout theporous media, and limited the spread in porosity and permeability values. Homogeneous sand packs with reproducible properties are necessary, to systematically investigate flow parameters and changes in wettability in unconsolidated porous media.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050103
Author(s):  
WENHUI SONG ◽  
JUN YAO ◽  
YANG LI ◽  
HAI SUN ◽  
DONGYING WANG ◽  
...  

The multiphase flow behavior in shale porous media is known to be affected by multiscale pore size, dual surface wettability, and nanoscale transport mechanisms. However, it has not been fully understood so far. In this study, fractal model of gas–water relative permeabilities (RP) in dual-wettability shale porous media for both injected water spontaneous imbibition and the flow back process are proposed using fractal geometry. The shale pore structure is described as tortuous with different pore sizes and morphologies including slit pore, equilateral triangle, circular pore and square pore. The proportion of each pore morphology can be obtained from SEM/FIB-SEM pore structure characterization results. Injected water spontaneous imbibition after hydraulic fracturing is modeled as the capillary force dominated process and injected water flow back is modeled as a non-wetting gas phase drainage process in inorganic matter. The organic pores are deemed to be not accessible by injected water. The boundary slip of water and free gas flow in the inorganic matrix are considered while both free gas flow and adsorbed gas flow are modeled in organic matter. The proposed gas–water RP fractal model is verified via comparisons with the available experimental data and is discussed in detail. Study results reveal that gas phase RP increases with increasing pore fractal dimensions and tortuosity fractal dimensions, whereas it decreases with increasing Total Organic Carbon (TOC) volumes. Water phase RP decreases with increasing of pore fractal dimensions and tortuosity fractal dimensions, whereas it increases with increasing TOC volumes.


Author(s):  
Pri Agung Rakhmanto ◽  
Listiana Satiawati ◽  
Rini Setiati ◽  
Asri Nugrahanti ◽  
Sonny Irawan

<em><span>In spontaneous imbibition researches, surfactant has been employed to control interfacial tension (IFT) and wettability. In this paper, the evaluation of grain size effect on spontaneous imbibition of surfactant solution is presented. In this work, the synthetic porous media (sand packs) with uniform and non-uniform grain size from 30 mesh to 100 mesh were made. The porous media were initially saturated by oil. Then they were immersed in brine with salinity of 62 to 40,000 ppm for 24 hours. After that, the porous media were immersed in surfactant solution with concentration of 0.2% for another 24 hours. The total oil recovery during these treatments was measured. The experiment was separated into three parts in order to investigate the effect of uniform grains, non-uniform grains, and salinity in spontaneous imbibition. The results show that grain size and porosity were proportional to oil recovery. In the case of porous media with uniform grain size, the effect of grain size on recovery factor is stronger than that of porosity. Meanwhile the salinity has an the optimum condition for </span><span lang="EN-US">a maximum </span><span>recovery factor. In this study, it happened at salinity of 20,000 ppm.</span><span> <span lang="EN-US">Oil recovery factors observed in this study ranged from 66.7% to 91.1%.</span></span></em>


Author(s):  
Jianlong Xiu ◽  
Tianyuan Wang ◽  
Ying Guo ◽  
Qingfeng Cui ◽  
Lixin Huang ◽  
...  

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


Sign in / Sign up

Export Citation Format

Share Document