scholarly journals The Sterilizing Effect of the Steam-Injection Type Direct Heating System.

1996 ◽  
Vol 43 (10) ◽  
pp. 1138-1145
Author(s):  
Kenji MIZUGUCHI ◽  
Shoji WAKAO ◽  
Mamoru TOMITA ◽  
Hideo SHIDARA ◽  
Masato ENDO ◽  
...  
1994 ◽  
Vol 41 (11) ◽  
pp. 803-809
Author(s):  
Hideo SHIDARA ◽  
Masato ENDO ◽  
Toshihiro CHIDA ◽  
Ryozo WATANABE ◽  
Kenji MIZUGUCHI ◽  
...  

Author(s):  
Jens Kristian Lervik ◽  
Harald Kulbotten ◽  
Gunnar Klevjer ◽  
Øyvind Iversen

Traditional chemical treatment methods have considerable operation costs and represent a risk to the environment. Since 1987 Norwegian oil companies have been investigating alternative electrical heating methods for prevention of hydrate and wax plugs. A joint industry project ‘Concept Verification – Direct Heating of Oil & Gas Pipelines’ was initiated in 1996 and terminated in October 1999. During this work an electrical heating system was proved to be feasible on several fields in the North Sea. It will be installed on 7 flowlines of 13% Chromium (Crl3) with lengths between 6 km and 16 km. Electrical heating is used to maintain or raise the thermally insulated steel pipe temperature above the critical value for hydrate formation (typically 15–25 °C) or wax formation (typically 20–40°C). A single-phase power supply for the heating system is based on commercial components and connected to the platform power supply. The qualification work for the direct heating system has included full scale testing for single and parallel pipes, end termination at the template, bypass of a template and aspects concerning corrosion control. The rating of the system is dependent on the magnetic and electrical characteristics of the steel material. Such data is not commonly available. Measurements performed during the qualification program confirm that the magnetic characteristic may vary within a wide range for a specific steel quality and that mechanical stress and heat treatment can effect the magnetic characteristic. The difference in magnetic characteristic of individual Crl3 pipes results in variation of the pipe temperature and problems concerning differential pressure during melting. The problem can be handled by dividing the pipeline into a number of sections, each with a limited variation of the magnetic characteristic, thus keeping the temperature for the whole pipeline within acceptable limits. As a part of the pipe specification both electrical and magnetic characteristic should be available. These data can be determined by measuring arrangements in the production line of the mill. Measures to limit the variation of magnetic characteristic should be discussed.


2018 ◽  
Vol 76 ◽  
pp. 29-37
Author(s):  
Yi Hou ◽  
Yuanyuan Qiao ◽  
Dajin Zhang ◽  
Chenghe Shi ◽  
Jing Liu ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1832 ◽  
Author(s):  
Janar Kalder ◽  
Andres Annuk ◽  
Alo Allik ◽  
Eugen Kokin

This article describes a method for increasing the solar heat energy share in the heating of a dwelling. Solar irradiation is high in summer, in early autumn, and in spring, but during that same time, the heat demand of dwellings is low. This article describes a solution for storing solar heat energy in summertime as well as the calculations of the heat energy balance of such a storage system. The solar heat energy is stored in a thermally insulated water tank and used in the heating period. The heat is also stored in the ground if necessary, using the ground loop of the heat pump if the water tank’s temperature rises above a certain threshold. The stored heat energy is used directly for heating if the heat carrier temperature inside the tank is sufficient. If the temperature is too low for direct heating, then the heat pump can be used to extract the stored energy. The calculations are based on the solar irradiation measurements and heating demand data of a sample dwelling. The seasonal storing of solar heat energy can increase the solar heat energy usage and decrease the heat pump working time. The long-term storage tank capacity of 15 m3 can increase the direct heating from solar by 41%. The direct heating system efficiency is 51%.


2013 ◽  
Vol 479-480 ◽  
pp. 25-29 ◽  
Author(s):  
Fang Sung Cheng ◽  
Yu Shun Cheng

This paper reports a simple and effective method to increase heating efficiency and decrease heating time that renders direct heating billet within die using resistance heating system during hot forging process. The apparatus employs resistance equipment set into the forging die, and the billet was directly resistance heating by the forging die. Base on the approach, the die as a forming condition on direct heating and forging was also researched. The result of experiments shows that the billet could be heated quickly to 1000°C in about 5 seconds and the high strength material (AISI4140) was successfully formed to the shape of bolt head. With this mechanism, the rapidly heating and isothermal deformation during the hot forging process can be achieved.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


Sign in / Sign up

Export Citation Format

Share Document