Implementation of a Low-Cost 3D-Printed Feline Larynx Model for Veterinary Students

Author(s):  
Daniel M. Sakai ◽  
Heather Skrzypczak ◽  
Pablo Nejamkin ◽  
Maria Clausse ◽  
Carlos Bulant ◽  
...  

Endotracheal intubation (EI) in domestic cats is an important skill that veterinary students learn in order to perform anesthesia safely in this species. Implementing a 3D-printed larynx model (LaryngoCUBE) during the instruction process may improve student’s learning of EI in felines. Twenty-two third-year students performed EI in cats with standard training (ST), and 16 students trained with the model (MT) the day before the laboratory. It was evaluated whether training with the model decreases the time and number of EI attempts, students’ perceived difficulty performing EI using a visual analog score (VAS; 0 cm = very easy, 10 cm = extremely difficult; median [minimum–maximum]), and the incidence of failure to perform EI. The EI time on ST (58 [18–160] seconds) was longer, but not statistically different from MT (29 [13–120] seconds; p = .101). The number of EI attempts on ST (2 [1–3]) was higher than MT (1 [1–3]; p = .005). The VAS on the ST and MT were 4.5 (0.0–10.0) cm and 3.0 (0.2–10.0) cm, respectively ( p = .029). The failure rate was 27% on the ST and 25% on the MT ( p = 1.000). Students who practiced with a larynx model took fewer attempts to perform EI, tended to be faster, and found that EI was easier. However, the EI success rate in MT was not improved.

2019 ◽  
Vol 62 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Cameron J. Hohimer ◽  
Heng Wang ◽  
Santosh Bhusal ◽  
John Miller ◽  
Changki Mo ◽  
...  

Abstract. Fresh market apple harvesting is a difficult task that relies entirely on manual labor. Much research has been done on the development of mechanical harvesting techniques. Several selective harvesting robots have been developed for research studies, but there are no commercially available robotic systems. This article discusses the design and development of a novel pneumatic 3D-printed soft-robotic end-effector to facilitate apple separation. The end-effector was integrated into a robotic system with five degrees of freedom that was designed to simplify the picking sequence and reduce costs compared to previous versions. Apples were successfully harvested using the low-cost robotic system in a commercial orchard during the fall 2017 harvest. A detachment success rate on attempted apples of 67% was achieved, with an average time of 7.3 s per fruit from separation to storage bin. By conducting this study in an orchard where problematic apples were not removed to increase the detachment success rate, current pruning and thinning practices were assessed to help lay the foundation for future studies and develop strategies for successfully harvesting apples that are difficult to detach. Keywords: Apple catching, Apples, Automated harvesting, Field experimentation, Harvesting robot, Soft-robotic gripper.


2020 ◽  
Author(s):  
Merel van der Stelt ◽  
Martin P. Grobusch ◽  
Abdul R. Koroma ◽  
Marco Papenburg ◽  
Ismaila Kebbie ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1977
Author(s):  
Ricardo Oliveira ◽  
Liliana M. Sousa ◽  
Ana M. Rocha ◽  
Rogério Nogueira ◽  
Lúcia Bilro

In this work, we demonstrate for the first time the capability to inscribe long-period gratings (LPGs) with UV radiation using simple and low cost amplitude masks fabricated with a consumer grade 3D printer. The spectrum obtained for a grating with 690 µm period and 38 mm length presented good quality, showing sharp resonances (i.e., 3 dB bandwidth < 3 nm), low out-of-band loss (~0.2 dB), and dip losses up to 18 dB. Furthermore, the capability to select the resonance wavelength has been demonstrated using different amplitude mask periods. The customization of the masks makes it possible to fabricate gratings with complex structures. Additionally, the simplicity in 3D printing an amplitude mask solves the problem of the lack of amplitude masks on the market and avoids the use of high resolution motorized stages, as is the case of the point-by-point technique. Finally, the 3D printed masks were also used to induce LPGs using the mechanical pressing method. Due to the better resolution of these masks compared to ones described on the state of the art, we were able to induce gratings with higher quality, such as low out-of-band loss (0.6 dB), reduced spectral ripples, and narrow bandwidths (~3 nm).


HardwareX ◽  
2021 ◽  
pp. e00214
Author(s):  
David T. McCarthy ◽  
Baiqian Shi ◽  
Miao Wang ◽  
Stephen Catsamas
Keyword(s):  
Low Cost ◽  

Author(s):  
Romain Nicot ◽  
Edwige Hurteloup ◽  
Sébastien Joachim ◽  
Charles Druelle ◽  
Jean-Marc Levaillant

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 572
Author(s):  
Mads Jochumsen ◽  
Taha Al Muhammadee Janjua ◽  
Juan Carlos Arceo ◽  
Jimmy Lauber ◽  
Emilie Simoneau Buessinger ◽  
...  

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement. Motor-evoked potentials (MEPs) elicited using transcranial magnetic stimulation were measured before, immediately after, and 30 min after BCI training with the exoskeleton. The BCI system had a true positive rate of 86 ± 12% with 1.20 ± 0.57 false detections per minute. Compared to the measurement before the BCI training, the MEPs increased by 35 ± 60% immediately after and 67 ± 60% 30 min after the BCI training. There was no association between the BCI performance and the induction of plasticity. In conclusion, it is possible to detect imaginary movements using an open-source BCI setup and control a cheap 3D-printed exoskeleton that when combined with the BCI can induce neural plasticity. These findings may promote the availability of BCI technology for rehabilitation clinics and home-use. However, the usability must be improved, and further tests are needed with stroke patients.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Dana Ashkenazi ◽  
Alexandra Inberg ◽  
Yosi Shacham-Diamand ◽  
Adin Stern

Additive manufacturing (AM) revolutionary technologies open new opportunities and challenges. They allow low-cost manufacturing of parts with complex geometries and short time-to-market of products that can be exclusively customized. Additive manufactured parts often need post-printing surface modification. This study aims to review novel environmental-friendly surface finishing process of 3D-printed AlSi10Mg parts by electroless deposition of gold, silver, and gold–silver alloy (e.g., electrum) and to propose a full process methodology suitable for effective metallization. This deposition technique is simple and low cost method, allowing the metallization of both conductive and insulating materials. The AlSi10Mg parts were produced by the additive manufacturing laser powder bed fusion (AM-LPBF) process. Gold, silver, and their alloys were chosen as coatings due to their esthetic appearance, good corrosion resistance, and excellent electrical and thermal conductivity. The metals were deposited on 3D-printed disk-shaped specimens at 80 and 90 °C using a dedicated surface activation method where special functionalization of the printed AlSi10Mg was performed to assure a uniform catalytic surface yielding a good adhesion of the deposited metal to the substrate. Various methods were used to examine the coating quality, including light microscopy, optical profilometry, XRD, X-ray fluorescence, SEM–energy-dispersive spectroscopy (EDS), focused ion beam (FIB)-SEM, and XPS analyses. The results indicate that the developed coatings yield satisfactory quality, and the suggested surface finishing process can be used for many AM products and applications.


2012 ◽  
Vol 516 ◽  
pp. 228-233
Author(s):  
Chil Chyuan Kuo ◽  
Zhi Yang Lin

Bridge tooling has been developed for fabricating the temporary mould inserts of aspheric lenses using silicone rubber materials. Prototype material for aspheric lenses is not recommended as quartz due to the low success rate in the fabrication process. This technology provides a fast, low cost and highly successful rate of fabricating the epoxy-based composite mould inserts of plastic aspheric optical lenses.


Sign in / Sign up

Export Citation Format

Share Document