Application of the Taguchi method for surface roughness predictions in the turning process

2016 ◽  
Vol 58 (9) ◽  
pp. 782-787 ◽  
Author(s):  
Sabri Ozturk
Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2014 ◽  
Vol 554 ◽  
pp. 376-380
Author(s):  
Ahmad Nooraziah ◽  
V. Janahiraman Tiagrajah

This paper presents the optimization of multiple performance characteristics (surface roughness and workpiece surface temperature) based on the Taguchi method. Three controllable factors of the turning process were studied at three levels. The single objective optimization was conducted using Taguchi method. The multiple Signal-to-Noise (MSNR) value was used to correspond to multi objective cases. The optimum combination of cutting parameters was obtained based on the highest value of MSNR.


Author(s):  
Salman Khani ◽  
Seyedhamidreza Shahabi Haghighi ◽  
Mohammad Reza Razfar ◽  
Masoud Farahnakian

In this paper, the thread turning of aluminum 7075-T6 alloy is studied using micro-hole textured solid-lubricant embedded carbide inserts. The primary focus of this work is to enhance the performance of the thread turning process for producing high quality threaded parts. To achieve this, micro-holes were generated by laser micro-machining on the rake face of tools and then, MoS2 and CNT (carbon nanotube) solid-lubricants were embedded into micro-holes. The effects of micro-holes and solid-lubrication on the performance of the thread turning process were examined using traditional tool ( T0), micro-hole textured tool ( T1), micro-hole textured MoS2 embedded tool ( T2), and micro-hole textured CNT embedded tool ( T3). In this study, cutting forces, chip-tool contact length, built-up edge (BUE), surface roughness, and operating cost were investigated. The influence of micro-hole generation on the mechanical strength of cutting inserts was evaluated using the finite element method. The results showed that the fabrication of the micro-holes on the rake surface of cutting inserts has no significant effect on the mechanical strength of the tools. The comparisons of our method with traditional tools demonstrated that the cutting performance improved in the threading process. Our results reveal that the main cutting force, radial thrust force, surface roughness, built-up edge, and chip-tool contact length reduced 37.1%, 40.9%, 37.9%, 58.3%, and 38.2%, respectively, as T3 tools are applied in this process. A cost analysis, based on estimated tooling costs, showed that the T3 tool can yield an 18% reduction in overall operating cost.


2017 ◽  
Vol 261 ◽  
pp. 267-274
Author(s):  
Pantelis N. Botsaris ◽  
Chaido Kyritsi ◽  
Dimitris Iliadis

In this paper, there is an attempt to monitor and evaluate machining parameters when turning 34CrNiMo6 material under different cooling and lubrication conditions. The machining parameters concerned are temperature of the cutting tool and the workpiece, level of vibrations of the cutting tool, surface roughness of the workpiece, noise levels of the turning process and current drawn by the main spindle motor. Four different experimental machining scenarios were completed, specifically: conventional wet turning process, dry cutting and two additional modes employing cooling by cold air. Experimental data were acquired and recorded by an optimally designed network of sensors. Experimental data were statistically analyzed in order to reach conclusions. According to the research that has been done, although, overall, minimum cutting tool and workpiece temperatures were observed under wet machining, cold air cooling is capable of achieving comparable cooling results to wet machining. The lowest values of surface roughness were achieved by wet machining, whereas the lowest level of cutting tool vibrations were observed under cold air cooling.


Sign in / Sign up

Export Citation Format

Share Document