Automatic TEM Sample Preparation

Author(s):  
Wayne D. Kaplan ◽  
Kim Kisslinger ◽  
Ron Oviedo ◽  
Efrat M. Raz ◽  
Colin Smith

Abstract The rising demand in the semiconductor industry for higher spatial resolution in the analysis of device defects has focused attention on the use of transmission electron microscopy (TEM). However, conventional TEM sample preparation may be difficult and time-consuming, and depending on the operator may result in a low yield of quality specimens. One solution to this problem is the use of focused ion beam (FIB) milling for the final stage of TEM sample preparation. However, specimens have to be mechanically thinned prior to FIB processing, and the need to characterize specific devices requires a pre-FIB preparation method to isolate specific regions on the wafer. An innovative and automated solution that isolates specific devices and prepares TEM specimens for subsequent thinning by FIB has been developed. Based on controlled microcleaving technology, the system automatically performs the pre-FIB preparation in less than 30 minutes. An important added benefit is that the target area to be analyzed can be positioned at a specific distance from the sample edge, thereby facilitating the final FIB milling stage. The thinned specimen is automatically packaged for subsequent FIB processing and TEM. Details of the method and examples showing TEM results from tungsten filled vias are presented.

2000 ◽  
Vol 8 (5) ◽  
pp. 14-19 ◽  
Author(s):  
Wayne D. Kaplan ◽  
Efrat Raz ◽  
Colin Smith

The rising demand in the semiconductor industry for higher spatial resolution in the analysis of device defects has focused attention on the use of transmission electron microscopy (TEM). However, conventional TEM sample preparation can be difficult and time-consuming, and, depending on the operator, may result in a low yield of quality specimens. One solution to this problem is the use of focused ion beam (FIB) milling for the final stage of TEM sample preparation. However, specimens have to be mechanically thinned prior to FIB and the need to characterize specific devices requires a pre-FIB preparation method that can target specific features on the wafer. We will discuss an innovative and automated solution that isolates specific devices and prepares TEM specimens for subsequent FIB thinning. The complete pre-FIB preparation takes less than 30 minutes and yields a sample in which the targeted feature is positioned a specific distance from the sample edge, thereby minimizing final FIB milling time. The output specimen is automatically packaged for FIB milling and TEM analysis. We also present drawings of the process flow and examples showing TEM results from tungsten filled vias.


Author(s):  
Jian-Shing Luo ◽  
Hsiu Ting Lee

Abstract Several methods are used to invert samples 180 deg in a dual beam focused ion beam (FIB) system for backside milling by a specific in-situ lift out system or stages. However, most of those methods occupied too much time on FIB systems or requires a specific in-situ lift out system. This paper provides a novel transmission electron microscopy (TEM) sample preparation method to eliminate the curtain effect completely by a combination of backside milling and sample dicing with low cost and less FIB time. The procedures of the TEM pre-thinned sample preparation method using a combination of sample dicing and backside milling are described step by step. From the analysis results, the method has applied successfully to eliminate the curtain effect of dual beam FIB TEM samples for both random and site specific addresses.


1996 ◽  
Vol 4 (6) ◽  
pp. 24-25
Author(s):  
John F. Walker

Part 1 of this series described how focused ion beam (FIB) microsurgery is used to successfully cross-section and prepare materialspecific samples for SEM and TEM analysis. In Part 2, we detailed how FIB is also the tool of choice to prepare site-specific samples, particularly for transmission electron microscopy (TEM) analysis. In this final article of this series, we describe actual sample preparation, cutting a selected area la size and mounting it on a grid for FIB preparation. Focused ion beams are very useful in preparing TEM specimens that have unique characteristics. In particular, the ability of such systems to image submicron features within a structure has allowed accurate identification of the precise place to make a membrane.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


Author(s):  
Chin Kai Liu ◽  
Chi Jen. Chen ◽  
Jeh Yan.Chiou ◽  
David Su

Abstract Focused ion beam (FIB) has become a useful tool in the Integrated Circuit (IC) industry, It is playing an important role in Failure Analysis (FA), circuit repair and Transmission Electron Microscopy (TEM) specimen preparation. In particular, preparation of TEM samples using FIB has become popular within the last ten years [1]; the progress in this field is well documented. Given the usefulness of FIB, “Artifact” however is a very sensitive issue in TEM inspections. The ability to identify those artifacts in TEM analysis is an important as to understanding the significance of pictures In this paper, we will describe how to measure the damages introduced by FIB sample preparation and introduce a better way to prevent such kind of artifacts.


Author(s):  
Romaneh Jalilian ◽  
David Mudd ◽  
Neil Torrez ◽  
Jose Rivera ◽  
Mehdi M. Yazdanpanah ◽  
...  

Abstract The sample preparation for transmission electron microscope can be done using a method known as "lift-out". This paper demonstrates a method of using a silver-gallium nanoneedle array for a quicker sharpening process of tungsten probes with better sample viewing, covering the fabrication steps and performance of needle-tipped probes for lift-out process. First, an array of high aspect ratio silver-gallium nanoneedles was fabricated and coated to improve their conductivity and strength. Then, the nanoneedles were welded to a regular tungsten probe in the focused ion beam system at the desired angle, and used as a sharp probe for lift-out. The paper demonstrates the superior mechanical properties of crystalline silver-gallium metallic nanoneedles. Finally, a weldless lift-out process is described whereby a nano-fork gripper was fabricated by attaching two nanoneedles to a tungsten probe.


2013 ◽  
Vol 19 (4) ◽  
pp. 1080-1091 ◽  
Author(s):  
Felipe Rivera ◽  
Robert Davis ◽  
Richard Vanfleet

AbstractTransmission electron microscopy (TEM) and focused ion beam (FIB) are proven tools to produce site-specific samples in which to study devices from initial processing to causes for failure, as well as investigating the quality, defects, interface layers, etc. However, the use of polymer substrates presents new challenges, in the preparation of suitable site-specific TEM samples, which include sample warping, heating, charging, and melting. In addition to current options that address some of these problems such as cryo FIB, we add an alternative method and FIB sample geometry that address these challenges and produce viable samples suitable for TEM elemental analysis. The key feature to this approach is a larger than usual lift-out block into which small viewing windows are thinned. Significant largely unthinned regions of the block are left between and at the base of the thinned windows. These large unthinned regions supply structural support and thermal reservoirs during the thinning process. As proof-of-concept of this sample preparation method, we also present TEM elemental analysis of various thin metallic films deposited on patterned polycarbonate, lacquer, and poly-di-methyl-siloxane substrates where the pattern (from low- to high-aspect ratio) is preserved.


Sign in / Sign up

Export Citation Format

Share Document