Sample Preparation and Analysis on Full-Thickness Silicon Wafers for Wafer-to-Wafer Bonding Process Development

Author(s):  
Richard J. Young ◽  
Alex Buxbaum ◽  
Corey Senowitz ◽  
C. Deeb ◽  
W.H. Teh

Abstract Focused ion beam (FIB) systems use a gallium liquid metal ion source as the source of the ions, providing a typical beam current range of 1 pA to 20-60 nA. Using a reactive gas in addition to the FIB usually enhances the etch rate from 1 to 15 times, but with the combination of xenon difluoride gas and a silicon substrate the enhancement can be over 1000 times. Such an enhancement makes the removal of large volumes of Si more practical, even with the typical upper end of FIB currents of 20-60 nA. This paper discusses the application of full-thickness silicon trenching to the process development of WtW bonding. With the increase in 3DIC, it is expected that fresh process characterization and failure analysis techniques will be required. The work presented shows the feasibility of extending FIB techniques to the process development of wafer-to-wafer bonded samples even on full-thickness wafers.

1995 ◽  
Vol 396 ◽  
Author(s):  
W. Thompson ◽  
A. Armstrong ◽  
S. Etchin ◽  
R. Percival ◽  
A. Saxonis

AbstractThe Gas Field Ion Source, GFIS, promises a 109A/(cm2 str) brightness, small beam sizes, and inert gas ion species. If this performance could be demonstrated on a commercial system, the GFIS might replace the liquid metal ion source as the standard source for FIB applications. Recent work at the Max-Planck-Institut für Kernphysik (MPI-K) in Heidelberg, Germany has shown that a GFIS with a ‘Super Tipped’ emitter can be reliably fabricated and can be run with stable helium beam current for more than 200 hours. However, this GFIS source must operate in a bakable UHV chamber, at cryogenic temperatures, and at high voltages with low vibration. A GFIS is now being integrated with high resolution ion optics and a vacuum chamber designed for studying GFIS image quality and ion induced chemistry.


1999 ◽  
Vol 5 (S2) ◽  
pp. 740-741 ◽  
Author(s):  
C.A. Urbanik ◽  
B.I. Prenitzer ◽  
L.A. Gianhuzzi ◽  
S.R. Brown ◽  
T.L. Shofner ◽  
...  

Focused ion beam (FIB) instruments are useful for high spatial resolution milling, deposition, and imaging capabilities. As a result, FIB specimen preparation techniques have been widely accepted within the semiconductor community as a means to rapidly prepare high quality, site-specific specimens for transmission electron microscopy (TEM) [1]. In spite of the excellent results that have been observed for both high resolution (HREM) and standard TEM specimen preparation applications, a degree of structural modification is inherent to FIB milled surfaces [2,3]. The magnitude of the damage region that results from Ga+ ion bombardment is dependent on the operating parameters of the FIB (e.g., beam current, beam voltage, milling time, and the use of reactive gas assisted etching).Lattice defects occur as a consequence of FIB milling because the incident ions transfer energy to the atoms of the target material. Momentum transferred from the incident ions to the target atoms can result in the creation of point defects (e.g., vacancies, self interstitials, and interstitial and substitutional ion implantation), the generation of phonons, and plasmon excitation in the case of metal targets.


1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


2003 ◽  
Vol 02 (04n05) ◽  
pp. 375-379 ◽  
Author(s):  
A. A. TSENG ◽  
B. LEELADHARAN ◽  
B. LI ◽  
I. INSUA ◽  
C. D. CHEN

The capability of using Focused Ion Beam (FIB) for milling microchannels is experimentally and theoretically investigated. Microchannel structures are fabricated by a NanoFab 150 FIB machine, using an Arsenic (As2+) ion source. A beam current of 5 pA at 90 keV accelerating energy is used. Several microchannel patternings are milled at various dwell times at pixel spacing of 14.5 nm on top of a 60 nm gold-coated silicon wafer. An analytical/numerical model is developed to predict the FIB milling behavior. By comparing with the experimental measurements, the model predictions have been demonstrated to be reliable for guiding and controlling the milling processes.


1994 ◽  
Vol 23 (1-4) ◽  
pp. 107-110 ◽  
Author(s):  
P.W.H. de Jager ◽  
L.J. Vijgen

Vacuum ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 249-251 ◽  
Author(s):  
A Melnikov ◽  
M Hillmann ◽  
I Kamphausen ◽  
W Oswald ◽  
P Stauche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document