Failure Analysis on BGA U45 on Soldered Balls

Author(s):  
Miguel Angel Neri Flores ◽  
Gregorio Vázquez Olvera

Abstract This paper presents a failure analysis to determine the origin of the failure on the soldered balls of one BGA soldered to a Printed circuit board, presenting Intermittency on the soldered joints, by Visual inspection, X ray inspection, Computed Tomography(CT), Cross-section analysis, Scanning Electron Microscopy, and Energy dispersive spectroscopy, determined the failure located on soldered balls of the BGA was caused by cracks that run along the Intermetallic layer formed between the solder balls and the copper pads of the printed circuit board, that were located near the BGA corners. With X ray computed Tomography we can analyze all the soldered balls of the BGA, by "virtual" cross-sections on the soldered joints without damage on the sample.

Author(s):  
Julien Perraud ◽  
Shaïma Enouz-Vedrenne ◽  
Jean-Claude Clement ◽  
Arnaud Grivon

Abstract The continuous miniaturization trends followed by a vast majority of electronic applications results in always denser PCBs (Printed Circuit Board) designs and PCBAs (Printed Circuit Board Assembly) with increasing solder joint densities. Current high-end designs feature high layer count sequential build-up PCBs with fine lines/spaces and numerous stacked filled microvias, as well as closely spaced BGA/QFN components with pitches down to 0.4mm. In recent years, several 3D packaging approaches have emerged to further increase system integration by enabling the stacking of several dies or packages. This has translated for example into the advent of highly integrated complex System in Package (SiP) modules, Package-on-Package (PoP) assemblies or chips embedded in PCBs [1]. From a failure analysis (FA) perspective, this deep technology evolution is setting extreme challenges for accurately locating a failure site, especially when destructive techniques are not desired. The few conventional non-destructive techniques like optical or x-ray inspection are now practically becoming useless for high density PCB designs. This paper reviews several advanced analysis techniques that could be used to overcome these limitations. It will be shown through several examples how three non-destructive methods usually dedicated to package analyses can be efficiently adapted to PCBs and PCBAs: • Scanning Acoustic Microscopy (SAM) • 3D X-ray Computed Tomography (CT) • Infrared Thermography A case study of a flex-rigid board FA is presented to show the efficiency of these three techniques over classical techniques. In this example, not only the defect localization has been possible, but also the defect characterization without using destructive analysis.


2022 ◽  
Vol 115 ◽  
pp. 103657
Author(s):  
S. Chumpen ◽  
S. Pimpakun ◽  
B. Charoen ◽  
S. Pornnimitra ◽  
S. Plong-ngooluam ◽  
...  

2019 ◽  
Vol 31 (4) ◽  
pp. 203-210
Author(s):  
Jie Tang ◽  
Yi Gong ◽  
Zhen-Guo Yang

Purpose The submitted paper is mainly concerned with the cracking of blind and buried vias of printed circuit board (PCB) for smartphones which were encountered with abnormal display problems like scramble display or no display during service and had to be recalled. Design/methodology/approach To found out the root causes of this failure and dissolve this commercial dispute, comprehensive failure analysis was performed on the printed circuit board assemblies (PCBAs) and PCBs of the failed smartphone, such as macrograph and micrograph observation, chemical compositions analysis, thermal performance testing and blind via pull-off experiment, which finally helped to determine the causes. Besides that, the failure mechanisms were discussed in detail, and pertinent countermeasures were proposed point by point. Findings It was found that the PCB blind vias cracking was the main reason for the scramble display or no display of the smartphone, and the incomplete cleaning process before copper plating was the root cause of the blind vias cracking. Practical implications Achievement of this paper would not only help to provide the solid evidence for determining the responsibility of this commercial dispute but also lead to a better understanding of the failure mechanisms and prevention methods for similar failure cases of other advanced mobile phones. Originality/value Most failure analysis researches of PCBAs only focused on the unqualified products from manufacturing, while this paper addressed a failure analysis case of PCBAs products for smartphones from actual services, which was relatively rarely reported in the past.


Author(s):  
Daren T. Slee

Abstract This paper is a review of propagating faults in printed circuit boards (PCBs) from the perspective of using the resulting burn and melted copper patterns to identify likely locations of fault initiation. Visual examination and x-ray imaging are the main techniques for examining PCB propagating faults. Once the likely fault initiation location has been identified, fault tree analysis can be used to determine the root cause for fault initiation. The paper discusses the mechanisms by which PCB propagating faults occur. The method of determining the likely area of initiation of the fault using visual examination of the PCB burn pattern, x-ray imaging, and the layout artwork for the PCB is discussed. The paper then goes on to discuss possible root-causes for the initiation of PCB propagating faults and some of their considerations.


Author(s):  
Daechul Choi ◽  
Sooyoung Ji ◽  
Jaelim Choi ◽  
Miyang Kim ◽  
Eunju Yang ◽  
...  

Abstract In this paper, we demonstrate a case for non-destructive detection of submicron wide via-crack in printed circuit boards (PCBs) by using in-situ thermal chamber 3D x-ray computed tomography. The defect location is verified by a PFA (Physical Failure Analysis), and good agreement was made. This fault isolation method is proposed as a possible solution for identifying submicron cracks in PCB substrates during challenging investigations.


Author(s):  
Przemyslaw K. Matkowski ◽  
Tomasz Falat ◽  
Andrzej Moscicki

This study investigates the effect of silver paste composition on reliability of sintered silver interconnections. The interconnections are formed between SMD 1206 chip jumpers and electroless nickel immersion gold (ENIG) coating of FR4 printed circuit board (PCB) solder pads. They are made of pastes that vary in their composition (various proportions of micro and nano particles). The sintering process was conducted in convective oven. After the process the interconnections were subjected to X-Ray inspection in order to characterize the structure of interconnections (presence of voids, total surface of interconnection etc.). During accelerated reliability tests the PCBs were subjected to combined temperature cycling and vibration loading. During the tests daisy chains of interconnections were connected to dedicated programmable multichannel event detector developed in LIPEC lab. The event detector is able to detect and store information about object condition based on the real-time resistance measurements and applied novel algorithm of event detection. Failure modes were confirmed by using X-Ray computed tomography. The paper presents results of comparative Weibull analysis.


Sign in / Sign up

Export Citation Format

Share Document