Wear Evaluation of Plasma Sprayed Oxide and Carbide Coatings

Author(s):  
C. Ding ◽  
J. Li ◽  
L. Zhang ◽  
X. Yu

Abstract Wear of plasma sprayed Cr2O3 TiO2, Cr3C2-NiCr and WC-Co coatings have been evaluated with a block-on-ring arrangement under dry and lubricated conditions. The results indicated that the wear of the coatings was interpreted in term of subsurface grain fracture which was related to the special microstructure of the coatings such as size, shape and distribution of pore as well as crack. Among the four kinds of coating, Cr2O3 coating possesses the lowest wear coefficient. Water accelerated cracking and fracturing and deteriorated the wear resistance of both Cr3C2-NiCr and TiO2 coatings. Ethanol reduced the wear of Cr3C2-NiCr coating, which was attributed to the formation of a smooth surface film mainly consisting of Cr2O3. Wear of Cr2O3, coating against an Al2O3 ball at high temperature has been also produced. The wear of Cr2O3 coating against Al2O3 ceramics decreased with increase in temperature and load. The reaction between Cr2O3 coating and Al2O3, ceramics at high temperature and the formation of a protective film consisting of Cr2O3, Al2O3 and SiO2 glass on the surface of Cr2O3 coating improved the wear resistance of Cr2O3 coating.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1688
Author(s):  
Jin Sha ◽  
Liang-Yu Chen ◽  
Yi-Tong Liu ◽  
Zeng-Jian Yao ◽  
Sheng Lu ◽  
...  

The remelting method is introduced to improve the properties of the as-sprayed NiCrBSi coatings. In this work, tungsten carbide (WC) was selected as reinforcement and the as-sprayed and remelted NiCrBSi/WC composite coatings were investigated by X-ray diffraction, scanning electron microscopy, hardness test and tribology test. After spraying, WC particles are evenly distributed in the coating. The remelting process induced the decarburizing reaction of WC, resulting in the formation of dispersed W2C. The dispersed W2C particles play an important role in the dispersion strengthening. Meanwhile, the pores and lamellar structures are eliminated in the remelted NiCrBSi/WC composite coating. Due to these two advantages, the hardness and the high-temperature wear resistance of the remelted NiCrBSi/WC composite coating are significantly improved compared with those with an as-sprayed NiCrBSi coating; the as-sprayed NiCrBSi coating, as-sprayed NiCrBSi/WC composite coating and remelted NiCrBSi/WC composite coating have average hardness of 673.82, 785.14, 1061.23 HV, and their friction coefficients are 0.3418, 0.3261, 0.2431, respectively. The wear volume of the remelted NiCrBSi/WC composite coating is only one-third of that of the as-sprayed NiCrBSi coating.


2011 ◽  
Vol 110-116 ◽  
pp. 1849-1854
Author(s):  
Nuchjira Dejang ◽  
Sukanda Jiansirisomboon

The additive (3wt%) nano-particles of anatase-TiO2and monoclinic-ZrO2were prepared using ball-milling method to form Al2O3/3wt%TiO2and Al2O3/3wt%ZrO2nanocomposite powders. The incorporation of nano-particles can significantly enhance the microstructure and mechanic properties of Al2O3-base coating. The phase of microstructure coating was present mostly of γ-Al2O3and α-Al2O3phases, while anatase-TiO2was transformed to rutile-TiO2and monoclinic-ZrO2was changed to tetragonal-ZrO2due to such high temperature of plasma plume. SEM microstructures of the coatings mainly displayed a lamellar structure of Al2O3with interlarmellar pores and well dispersed splats of TiO2and ZrO2phases. The Al2O3/3wt%ZrO2presented the lowest value of friction coefficient and sliding wear rate. It was found that the plasma-sprayed composite coating possessed better wear resistance than that of monolithic Al2O3coating. The addition of nano-particles was found to improve friction coefficient and sliding wear resistance.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
T.R. Dinger ◽  
G. Thomas

The use of Si3N4, alloys for high temperature, high stress structural applications has prompted numerous studies of the oxynitride glasses which exist as intergranular phases in their microstructures. Oxynitride glasses have been investigated recently in their bulk form in order to understand their crystallization behavior for subsequent Si3N4 applications and to investigate their worth as glass-ceramic precursors. This research investigates the crystallization sequence of a glass having a normalized composition of Y26Si30Al11 ON11 and lying in the A1N-Y2O3-SiO2 section of the Y-Si-Al-O-N system. Such glasses exist as intergranular phases in the technologically important Y2O3/Al2O3-fluxed Si3N4 alloys.


Author(s):  
Oleksandr M. Kostin ◽  
Anastasiia Yu. Butenko ◽  
Volodymyr O. Martynenko

Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract REYNOLDS 390 and A390 are hypereutectic aluminum-silicon alloys having excellent wear resistance coupled with good mechanical properties, high hardness, and low coefficients of expansion. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, and machining. Filing Code: Al-203. Producer or source: Reynolds Metals Company.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Alloy Digest ◽  
1993 ◽  
Vol 42 (3) ◽  

Abstract WAUKESHA METAL NO. 23 is a nickel-base casting alloy having high resistance to corrosion, good machinability, and freedom from any tendency to seize or gall. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance, corrosion and wear resistance as well as machining and joining. Filing Code: Ni-49. Producer or source: Waukesha Foundry Company. Originally published January 1959, revised March 1993.


Alloy Digest ◽  
1977 ◽  
Vol 26 (1) ◽  

Abstract NUCALLOY 45 is a nickel-chromium-boron alloy which derives superior wear resistance from the presence of hard nickel borides (and to a lesser extent chromium carbides) tightly held in a nickel-rich matrix. It is used in many commercial applications because of its toughness and high resistance to attack by many chemicals. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: Ni-238. Producer or source: Stoody Company.


Sign in / Sign up

Export Citation Format

Share Document