Permeability Specifications for High-Performance Concrete Decks

Author(s):  
Celik Ozyildirim

Durable concrete exposed to the environment requires a proper air-void system for protection against cycles of freezing and thawing. Durable concretes also must have low permeability to resist the infiltration of harmful solutions into concrete. Work was conducted by the Virginia Department of Transportation (VDOT) on the permeability of concretes. Information is provided on permeability, recent VDOT efforts with a low-permeability specification, and the field application of the low-permeability specification.

Author(s):  
Celik Ozyildirim ◽  
José P. Gomez

The Virginia Department of Transportation built a high-performance concrete (HPC) bridge in Richlands, Virginia. The beams had a minimum compressive strength of 69 MPa (10,000 psi) at 28 days; the large strands, 15 mm (0.6 in.) in diameter, were placed 51 mm (2 in.) apart. The deck concrete was designed to have a minimum compressive strength of 35 MPa (5,000 psi) and low permeability. A test program was initiated before construction to develop the HPC mixes. The development of the mixes and the construction and condition assessment of the bridge after two winters is described. The test program, field application, and inservice performance indicated that HPC concrete with high strength and low permeability can be produced using locally available material.


Author(s):  
Prasada Rao Rangaraju

In collaboration with FHWA, the Minnesota Department of Transportation (Mn/DOT) has successfully completed its first experimental high-performance concrete pavement (HPCP) project under the Testing and Evaluation Program (TE-30). This project is one of the 22 projects funded under the TE-30 Program. With a structural design life of 60 years, this HPCP is unique in that it incorporates significant changes to the existing Mn/DOT specifications on concrete materials. Some of the new materials-related specifications developed as a part of this project are based on performance criteria that influence long-term durability of the pavement structure. The background and considerations for selecting the new performance measures are discussed, and test results are presented that evaluate the practical feasibility of establishing and achieving the performance specifications.


Author(s):  
Stacey D. Diefenderfer

The Virginia Department of Transportation began allowing the use of warm mix asphalt (WMA) in 2008. Although several WMA technologies were investigated prior to implementation, foamed WMA was not. This study evaluated the properties and performance of foamed WMA placed during the initial implementation of the technology to determine whether the technology had performed as expected. Six mixtures produced using plant foaming technologies and placed between 2008 and 2010 were identified and subjected to field coring and laboratory testing. Coring was performed in 2014, resulting in pavement ages from 4 to 6 years. Three comparable hot mix asphalt (HMA) mixtures were cored at 5 years for comparison. Cores were evaluated for air-void contents and permeability and were subjected to dynamic modulus, repeated load permanent deformation, and overlay testing. In addition, binder was extracted and recovered for performance grading. Similar properties were found for the WMA and HMA mixtures. One WMA mixture had high dynamic modulus and binder stiffness, but overlay testing did not indicate any tendency for premature cracking. All binders had aged between two and three performance grades above that specified at construction. WMA binders and one HMA binder aged two grades higher, and the remaining two HMA binders aged three grades higher, indicating a likely influence on aging of the reduced temperatures at which the early foamed mixtures were typically produced. Overall results indicated that foamed WMA and HMA mixtures should be expected to perform similarly.


Author(s):  
M. Lessard ◽  
M. Baalbaki ◽  
P.-C. Aïtcin

The stability of the air content of concrete during pumping has been the subject of a number of recent investigations. Because increasing volumes of concrete are placed with the aid of pumps and the durability of such concrete to freezing and thawing (ASTM C666) as well as the scaling resistance (ASTM C672) preoccupy engineers, a study concerning the stability of the air-void system of a concrete with 45 to 50 MPa compressive strength was carried out. The slump of the three tested concretes ranged between 85 and 115 mm. Three pumping setups were studied. In the first, the concrete was pumped horizontally; in the second the concrete was pumped upward and then downward. In the third, the vertical setup was used but a reduced section was placed at the end of the pump line, and the concrete was allowed to free fall a short distance. For each pump setup, the concrete was sampled before being placed in the pump and after leaving the pump. The results clearly show that when the concrete is pumped horizontally, the spacing factor (L) and the specific surface of the air-void system are barely altered. On the other hand, after pumping the concrete vertically without a reduced end section, it was impossible to obtain an L less than 230 μm, the maximum spacing factor allowed by Canadian standards (CSA A23.1) to ensure good frost durability. Furthermore, the specific surface of the air bubbles fell to 20 mm−1, which is inferior to the 25-mm−1 value recommended in Canadian standards. By placing a reduced section at the end of the vertical pump line, it was possible to enhance the air-void system but that procedure still fell short of ensuring a system that satisfies the air-void system recommended by Canadian standards to ensure proper frost durability. Although the pumped concrete mixtures did not always satisfy the requirements of CSA A23.1 regarding air-void systems, they satisfied the requirements of ASTM C666 (Procedure A) for resistance to freeze-thaw cycles. Freeze-thaw resistance in the presence of deicing salts was evaluated according to ASTM C672. After 50 frost cycles, all but one concrete exhibited mass losses that were lower than the maximum permissible limit of 0.50 kg/m2 required by BNQ 2621-900, the standard currently enforced in the province of Quebec. Placing a reduced section at the end of the pump line creates a light counterpressure in the descending section of the pump line, which allows the conservation of an acceptable air-void system. Considering the appreciable improvement in the preservation of air-void characteristics when a reduced section was placed at the end of the pump line, it was decided to proceed with further experimental work using four 90-degree elbows placed at the end of the vertically hanging pump line.


Author(s):  
L. K. Crouch ◽  
Heather J. Sauter ◽  
Jacob A. Williams

An air-entrained high-performance concrete (HPC) mixture design for prestressed bridge beams was developed in an attempt to interest the Tennessee Department of Transportation. The mixture contained locally available, 19-mm maximum-size limestone as the coarse aggregate and a manufactured limestone fine aggregate. A dense, combined aggregate gradation was used to lower water demand and thus enhance durability. Type II portland cement, microsilica, and Class C fly ash were used as binder materials. The resulting w/(c + p) was 0.22. Twelve 0.028-m3 batches of the HPC were mixed for the study. The mixture design produced an average air content of 4.1 percent and an average slump of 72 mm. Although it contained 4.1 percent air, the mixture remained very dense, with an average unit weight of 2422 kg/m3. Average compressive strengths of 72.6, 63.3, 84.8, and 92.9 MPa were achieved at simulated release at 7, 28, and 56 days, respectively. Measured static modulus of elasticity at 28 days agreed with ACI 363R-92 equations within 2 percent. Further, after 600 freezing and thawing cycles, the average durability factor of two prismatic specimens was 100, and visible damage was minimal.


2013 ◽  
Vol 438-439 ◽  
pp. 54-57
Author(s):  
Wen Cui

Mix design of high performance concrete was determined based on the pumping simulation test. It was indicated by test and field application that the trimixture technique and the double mixture technique can improve the pump of concrete, reduce the dosage of cement and the hydration heat; adding expansion agent can prevent harmful cracks in the concrete due to shrinkage stress, improve the compactness and impermeability. The reasonable construction technologies were used in mixing, transportation, pouring, vibrating and curing of the concrete in order to ensure quality of the construction.


2014 ◽  
Vol 8 (1) ◽  
pp. 360-367 ◽  
Author(s):  
Liu Faming ◽  
Ye Shujin ◽  
Ma Jie

Steel corrosion caused by chlorine salt erosion, degrade performance of reinforced concrete structures. Lead to can't use or need to reinforce the maintenance structure, produce the huge economic losses. The research of this subject is also a worldwide difficult problem. The freeze-thaw damage of concrete is a complex process of physical change. The chlorine salt erosion is often accompanied by freezing and thawing process. Make concrete structure is in a very bad environment. According to different sources of chloride ion and adopt general international electrochemical chloride extraction testing method of concrete specimens after different freezing and thawing times, the effect of chloride extraction, compressive strength, permeability resistance are studied. It is concluded that the chloride extraction, the strength and durability of the concrete member after freezing and thawing has had certain improvement, especially the durability has a lot to improve. In addition, put forward to increase thickness of concrete cover, preferable high-performance concrete resistance to chloride, strictly control the content of chlorine ion in concrete raw materials, adding reinforcement rust and corrosion inhibitor, adopting concrete corrosion layer, special steel, cathodic protection and so on measures to prevent the chlorine salt erosion. For electrochemical chloride extraction technique in reinforced concrete hydraulic structure, the application of civil engineering in the marine environment which it is provided the theoretical foundation and promotion.


2018 ◽  
Vol 162 ◽  
pp. 02011
Author(s):  
Muthana Saadi ◽  
Tareq al-Attar ◽  
Shatha Hasan

The behavior of internally cured high performance concrete, HPC, exposed to freezing and thawing cycles, was investigated. Two saturated curing agents, Limestone dust and powder of Porcelanite rock, were used to facilitate internal curing for concrete. These agents were used as partial replacements of fine aggregate in two volumetric percentages, 20 and 30 percent. The cast concrete specimens were separated in two groups according to curing method: water-cured and sealed (only internally-cured) specimens. The concrete specimens were subjected to three exposure systems, F0: without freezing and thawing, and F1 and F2: with 50 and 100 cycles of freezing and thawing, respectively. The freezing and thawing test was done as stipulated by the ASTM C666. The conducted tests for each exposure were: compressive and flexural strengths. The results revealed that internal curing does not enhance the concrete resistance to freezing and thawing cycles. Using saturated agents has increased the moisture content of concrete and makes it more vulnerable to frost action deterioration. Sealed specimens for all investigated mixes showed lower reductions in strength than water-cured ones. The lesser water content of these mixes may be the reason for that behavior.


Sign in / Sign up

Export Citation Format

Share Document