Aggregate Rugosity and Size Effect on Bituminous Mixes

Author(s):  
Taisir S. Khedaywi ◽  
Egons Tons

Higher costs and possible restricted availability of asphalt have stimulated research and discussion on how to reduce the amount of asphalt in bituminous mixes without sacrificing service. A hypothesis was proposed suggesting that for each coarse aggregate type with different surface characteristics there is a specific fine aggregate size that contributes to developing an interlocking mechanism between the surfaces of coarse aggregates when they are combined in a bituminous mix. To test this hypothesis, two types of coarse aggregates having different surface characteristics or rugosity, limestone and rounded gravel, were used. For each aggregate, two one-size fractions were tested—19 mm to 25 mm and 6.4 mm to 4.75 mm. One type of fine aggregate (limestone) with five one-size fractions was used. Four flow binder film thicknesses were chosen. The packing volume and rugosity concepts were the theoretical basis. Asphalt and aggregate mixes were tested in compression. The results were evaluated by the use of regression equations. Graphical presentations and illustrations were used as necessary. Unconfined compression test results showed that for one-size limestone coarse aggregate, the highest strength values were associated with No. 60 to No. 80 fines in the mix and for one-size rounded gravel coarse aggregate, the highest strength occurred when No. 200 to No. 270 fines were added to the mix. The highest strength was associated with 50 μm flow binder film thickness for all mixes.

Author(s):  
Lawrence Echefulechukwu Obi

This work was necessitated by the observations made at construction sites where artisans and craftsmen were left alone in concrete production. It was discovered that they used inadequate quantity and size of coarse aggregates due to difficulty associated in the mixing as if the coarse aggregates were not needed in concrete production. The research has established that the coarse aggregates and their sizes play critical roles in the development of adequate strength in concrete. It was observed that with proper mixing, the slump test results did not witness shear or collapse type of slump rather there were true slump in all cases of the test. The workability decreased with slight differences when the coarse aggregate size was increased. The increase in the coarse aggregates yielded appreciable increase in the compressive strength. It can therefore be inferred that the quality of concrete in terms of strength can be enhanced through an increase in the coarse aggregate size when proper mix ratio, batching, mixing, transporting, placing and finishings are employed in concrete productions.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


2013 ◽  
Vol 811 ◽  
pp. 223-227
Author(s):  
Yong Ye ◽  
Hong Kai Chen ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of coarse aggregates (aggregate size bigger than 2.36 mm) on the compressive strength and creep behavior of asphalt mixture. The variable that is mainly considered in the study is the gradation degradation of coarse aggregates. A kind of standard aggregate gradation and three kinds of degraded aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions and temperatures. The test results on asphalt mixture showed that the compressive strength and creep behavior of asphalt mixture are significant affected by the different coarse aggregate gradations.


2021 ◽  
Vol 28 (1) ◽  
pp. 516-527
Author(s):  
Jiangwei Bian ◽  
Wenbing Zhang ◽  
Zhenzhong Shen ◽  
Song Li ◽  
Zhanglan Chen

Abstract The most significant difference between recycled and natural concretes lies in aggregates. The performance of recycled coarse aggregates directly affects the characteristics of recycled concrete. Therefore, an in-depth study of aggregate characteristics is of great significance for improving the quality of recycled concrete. Based on the coarse aggregate content, maximum aggregate size, and aggregate shape, this study uses experiments, theoretical analysis, and numerical simulation to reveal the impact of aggregate characteristics on the mechanical properties of recycled concrete. In this study, we selected the coarse aggregate content, maximum aggregate size, and the aggregate shape as design variables to establish the regression equations of the peak stress and elastic modulus of recycled concrete using the response surface methodology. The results showed that the peak stress and elastic modulus of recycled concrete reach the best when the coarse aggregate content is 45%, the maximum coarse aggregate size is 16 mm, and the regular round coarse aggregates occupy 75%. Such results provide a theoretical basis for the resource utilization and engineering design of recycled aggregates.


2014 ◽  
Vol 554 ◽  
pp. 111-115 ◽  
Author(s):  
A.H. Nur Hidayah ◽  
Md. Nor Hasanan ◽  
P.J. Ramadhansyah

The objective of the study is to investigate the potential of using Porous Concrete Paving Blocks (PCPB) as a part of paving surface. Laboratory tests were conducted to compare and examine the effect of particle sizes of coarse aggregate. Two coarse aggregate sizes were selected; passing 8 mm retains 5 mm and passing 10 mm retains 8 mm. The fine aggregate was eliminated from mixes. The water to cement ratio used was 0.35. Compressive strength and skid resistance tests were performed to evaluate the properties of PCPB. The test results indicated that there was a reduction in the strength when coarse aggregate at different size was used. Scanning electron microscopy showed that voids, poor bonding and lack of adhesion at the boundaries of the aggregate with cement paste contributing to the low PCPB strength. However, both PCPB specimens provide 30 % to 40 % increase in skid resistance compared to Concrete Paving Blocks (CPB).


2016 ◽  
Vol 847 ◽  
pp. 437-444 ◽  
Author(s):  
Ying Liang Tian ◽  
Wen Cai Liu ◽  
Su Ping Cui ◽  
Shi Bing Sun ◽  
Yi Wang ◽  
...  

In recent decades, high-tech electrical equipment has drastically proliferated instead of Cathode Ray Tube (CRT), making CRT funnel glass potential hazardous solid waste. Due to a relatively high level of lead, CRT funnel glass could be used as a potential material for the production of anti-radioactive concrete. In our study the CRT funnel glass , which was separated as aggregate in the concrete, was reduced to 4.75-25 mm (coarse aggregates) and less 4.75 mm (fine aggregates) in the production of anti-radioactive concrete. Mixes containing 0%, 20%, 40% , 60%, 80% and 100% (volume percentage) of CRT funnel glass to replace fine aggregate and coarse aggregate (respectively or simultaneously)) were prepared. The influence of the size, shape and replacement percentage of aggregates on workability, compressive strength and radiation shielding performance were determined. It was found that the replacement of natural aggregate with recycled CRT glass considerably improved the slump and radiation shielding performance but reduced compressive strength. The optimum percentage of waste funnel glass used as fine aggregate and coarse aggregate was 40%. The results clearly showed that the CRT funnel glass performed a significant enhancement in radiation shielding properties.


2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2013 ◽  
Vol 857 ◽  
pp. 10-19
Author(s):  
Ji Liang Wang ◽  
Xiang Qian Wen ◽  
Jun Hong Shan ◽  
Ying Liu

the influence of mixing amount of mineral admixture, volume content of fine and coarse aggregate have been systematical studied on the workability, mechanical properties and volume stability of self-compacting concrete. Test results showed that with the fly ash content increased, the workability of self-compacting concrete improved significantly, early compressive strength decreased, but increase rate of later strength improved remarkably, and the mixing amount of fly ash inhibited significantly the dry shrinkage of self-compacting concrete; with the volume content of coarse aggregate increased, the workability of self-compacting concrete decreased significantly, but the volume stability of self-compacting concrete improved obviously, thus the optimum volume content of coarse aggregate of self-compacting concrete was range from 0.30 to 0.34; when the volume content of fine aggregate varied at the range of 0.40~0.50, there may be little effects on the workability of self-compacting concrete, but the increase self-compacting concretes volume content could reduce obviously the dry shrinkage of self-compacting concrete. Moreover, the variation in the volume content of coarse and fine aggregate should have slight influence on the early strength of self-compacting concrete, and the influence of the volume content variety on the later strength of self-compacting concrete could be neglected eventually.


Author(s):  
Gideon O. Bamigboye ◽  
David O. Olukanni ◽  
Adeola A. Adedeji ◽  
Kayode J. Jolayemi

This study deals mainly with the mix proportions using granite and unwashed gravel as coarse aggregate for self-compacting concrete (SCC) and its workability, by considering the water absorption of unwashed gravel aggregate. Mix proportions for SCC were designed with constant cement and fine aggregate while coarse aggregates content of granite-unwashed gravel combination were varied in the proportion 100%, 90%/10%, 80%/20%, 70%/30%, 60%/40%, 50% /50%, represented by SCC1, SCC2, SCC3, SCC4, SCC5 and SCC6. 100% granite (SCC1) serves as the control. The workability of the samples was quantitatively evaluated by slump flow, T500, L-box, V- funnel and sieve segregation tests. Based on the experimental results, a detailed analysis was conducted. It was found that granite and unwashed gravel with SCC1, SCC2 and SCC3 according to EFNARC (2002) standard have good deformability, fluidity and filling ability, which all passed consistency test. SCC1, SCC2 and SCC3 have good passing ability while all mixes were in the limit prescribed by EFNARC (2002). It can be concluded that the mix design for varying granite-unwashed gravel combination for SCC presented in this study satisfy various requirements for workability hence, this can be adopted for practical concrete structures.


2014 ◽  
Vol 63 (1) ◽  
pp. 44-48
Author(s):  
Kohei SAWA ◽  
Yoshihisa NAKAYAMA ◽  
Natsuko KUSUMOTO ◽  
Yumi NAKATA

Sign in / Sign up

Export Citation Format

Share Document