Robotic Machine for Highway Crack Sealing

Author(s):  
D. A. Bennett ◽  
X. Feng ◽  
S. A. Velinsky

An operator-controlled crack-sealing machine was developed and tested at the Advanced Highway Maintenance and Construction Technology (AHMCT) Research Center at the University of California, Davis. The machine, integrated onto a single truck, provides ease of operation and a simple, automated method of sealing random pavement cracks. The operator provides the machine its tasks and is the decision maker; the machine automatically performs the repetitive and dangerous tasks of mapping pavement cracks, creating seal paths for the robot, and sealing the cracks. The operator communicates with the machine through a simple user interface adjacent to the driver. This operator control approach drastically reduces the machine’s control complexity relative to fully automated crack-sealing machines. To be able to seal cracks within a full lane without intruding into adjacent lanes, a telescoping long-reach robotic arm was developed that can position the sealing head mounted to its end in a large 3.7- x 4-m (12- x 13-ft) workspace, within 0.4 mm (1/64 in.) at a traverse speed up to 1 m/s (3 ft/s). A special sealant applicator that deploys a pressurized reservoir was developed to allow high-speed and automated sealing operations. A 100-Mbps fast Ethernet and 10-Mbps wireless control network allows for distributed real-time motion control, input/output control, and machine vision. A fully object-oriented, multithreaded Internet-based software architecture allows reliable and efficient system integration and provides an interactive and responsive user interface for feature-rich and easy imaging, path planning, and system control.

2015 ◽  
Vol 1 (1) ◽  
pp. 5-16
Author(s):  
John Ohoiwutun

Utilization of conventional energy sources such as coal, fuel oil, natural gas and others on the one hand has a low operating cost, but on the other side of the barriers is the greater source of diminishing returns and, more importantly, the emergence of environmental pollution problems dangerous to human life. This study aims to formulate the kinematics and dynamics to determine the movement of Solar Power Mower. In this study, using solar power as an energy source to charge the battery which then runs the robot. Design and research was conducted in the Department of Mechanical Workshop Faculty of Engineering, University of Hasanuddin of Gowa. Control system used is a manual system using radio wave transmitter and receiver which in turn drive the robot in the direction intended. Experimental results showed that treatment with three variations of the speed of 6.63 m / s, 8.84 m / s and 15.89 m / sec then obtained the best results occur in grass cutting 15.89 sec and high-speed cutting grass 5 cm. Formulation of kinematics and dynamics for lawn mowers, there are 2 control input variables, x and y ̇ ̇ 3 to control the output variables x, y and θ so that there is one variable redudant. Keywords: mobile robots, lawn mower, solar power


2021 ◽  
Vol 11 (15) ◽  
pp. 6899
Author(s):  
Abdul Aabid ◽  
Sher Afghan Khan ◽  
Muneer Baig

In high-speed fluid dynamics, base pressure controls find many engineering applications, such as in the automobile and defense industries. Several studies have been reported on flow control with sudden expansion duct. Passive control was found to be more beneficial in the last four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional control mechanics and objects to control the flow. Therefore, in the last two decades, the active control method has been used via a microjet controller at the base region of the suddenly expanded duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted to investigate the research gap by reviewing the exhaustive work on the active control of high-speed aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle and its configuration is discussed, and the passive control method for the control of flow, jet and noise are represented in order to investigate the existing contributions in supersonic speed applications. A critical review of the last two decades considering the challenges and limitations in this field is expressed. As a contribution, some major and minor gaps are introduced, and we plot the research trends in this field. As a result, this review can serve as guidance and an opportunity for scholars who want to use an active control approach via microjets for supersonic flow problems.


Author(s):  
Young Hyun Kim ◽  
Eun-Gyu Ha ◽  
Kug Jin Jeon ◽  
Chena Lee ◽  
Sang-Sun Han

Objectives: This study aimed to develop a fully automated human identification method based on a convolutional neural network (CNN) with a large-scale dental panoramic radiograph (DPR) dataset. Methods: In total, 2,760 DPRs from 746 subjects who had 2 to 17 DPRs with various changes in image characteristics due to various dental treatments (tooth extraction, oral surgery, prosthetics, orthodontics, or tooth development) were collected. The test dataset included the latest DPR of each subject (746 images) and the other DPRs (2,014 images) were used for model training. A modified VGG16 model with two fully connected layers was applied for human identification. The proposed model was evaluated with rank-1, –3, and −5 accuracies, running time, and gradient-weighted class activation mapping (Grad-CAM)–applied images. Results: This model had rank-1,–3, and −5 accuracies of 82.84%, 89.14%, and 92.23%, respectively. All rank-1 accuracy values of the proposed model were above 80% regardless of changes in image characteristics. The average running time to train the proposed model was 60.9 sec per epoch, and the prediction time for 746 test DPRs was short (3.2 sec/image). The Grad-CAM technique verified that the model automatically identified humans by focusing on identifiable dental information. Conclusion: The proposed model showed good performance in fully automatic human identification despite differing image characteristics of DPRs acquired from the same patients. Our model is expected to assist in the fast and accurate identification by experts by comparing large amounts of images and proposing identification candidates at high speed.


Author(s):  
Hubertus v. Stein ◽  
Heinz Ulbrich

Abstract Due to the elasticity of the links in modern high speed mechanisms, increasing operating speeds often lead to undesirable vibrations, which may render a required accuracy unattainable or, even worse, lead to a failure of the whole process. The dynamic effects e.g. may lead to intolerable deviations from the reference path or even to the instability of the system. Instead of suppressing the vibration by a stiffer design, active control methods may greatly improve the system performance and lead the way to a reduction of the mechanism’s weight. We investigate a four-bar-linkage mechanism and show that by introducing an additional degree of freedom for a controlled actuator and providing a suitable control strategy, the dynamically induced inaccuracies can be substantially reduced. The modelling of the four-bar-linkage mechanism as a hybrid multi body system and the modelling of the complete system (including the actuator) is briefly explained. From the combined feedforward-feedback optimal control approach presented in (v. Stein, Ulbrich, 1998) a time-varying output control law is derived that leads to a very good system performance for this linear discrete time-varying system. The experimental results show the effectiveness of the applied control strategy.


2001 ◽  
Author(s):  
Masao Nagai ◽  
Hidehisa Yoshida ◽  
Kiyotaka Shitamitsu ◽  
Hiroshi Mouri

Abstract Although the vast majority of lane-tracking control methods rely on the steering wheel angle as the control input, a few studies have treated methods using the steering torque as the input. When operating vehicles especially at high speed, drivers typically do not grip the steering wheel tightly to prevent the angle of the steering wheel from veering off course. This study proposes a new steering assist system for a driver not with the steering angle but the steering torque as the input and clarifies the characteristics and relative advantages of the two approaches. Then using a newly developed driving simulator, characteristics of human drivers and the lane-tracking system based on the steering torque control are investigated.


Author(s):  
Meera Patel ◽  
Bhanu Pratap

An adaptive observer-based controller design for the nonlinear model of a high-speed train is demonstrated in this paper. A high-speed train belongs to the class of multivariable and coupled dynamic system with a higher degree of nonlinearities and uncertainties. The radial basis function neural network is used for the approximation of these nonlinearities and uncertainties. Using this approximation, an adaptive neuro-observer is designed for the estimation of the unavailable states of the high-speed train for measurement. Using one-to-one nonlinear mapping, the high-speed train plant and the adaptive neuro-observer are remodelled in a pure feedback form without any constraints on states. On the basis of the adaptive neuro-observer, an adaptive dynamic surface controller is designed for the high-speed train system. The upper bounds of the actual controller gains of the high-speed train need not be known whereas the lower and upper bounds of the virtual controller gain require prior knowledge. The tuning of the design parameters has been done online in the proposed observer/controller. The closed-loop stability and convergence have been analysed through a formal proof based on the Lyapunov approach. The enhanced performance of the high-speed train with the proposed controller is compared with the backstepping control approach and demonstrated using simulation studies.


2002 ◽  
Vol 124 (4) ◽  
pp. 668-674 ◽  
Author(s):  
Nader Sadegh ◽  
Ai-Ping Hu ◽  
Courtney James

This paper describes a multirate repetitive learning controller with an adjustable sampling rate that may be used as an “add-on” module to enhance the tracking performance of a feedback control system. The sampling rate of the multirate controller is slower than the remainder of the control system, and is selected by the user to achieve the required system performance based on a trade-off between the accuracy and the complexity of the controller. The multirate controller learns the system control input based on the tracking error down-sampled using a weighted averaging filter. The output of the multirate controller is up-sampled through an arbitrary hold mechanism determined by the user. This paper extends the existing stability results for single-rate repetitive learning controllers to the proposed multirate scheme. It provides an explicit procedure for its design and stability analysis. In addition, the proposed multirate repetitive learning controller is implemented on a mechanical system performing a non-colocated control task, where its effectiveness in reducing tracking errors while following periodic reference trajectories is shown experimentally.


Author(s):  
M. Necip Sahinkaya ◽  
Yanzhi Li

Inverse dynamic analysis of a three degree of freedom parallel mechanism driven by three electrical motors is carried out to study the effect of motion speed on the system dynamics and control input requirements. Availability of inverse dynamics models offer many advantages, but controllers based on real-time inverse dynamic simulations are not practical for many applications due to computational limitations. An off-line linearisation of system and error dynamics based on the inverse dynamic analysis is developed. It is shown that accurate linear models can be obtained even at high motion speeds eliminating the need to use computationally intensive inverse dynamics models. A point-to-point motion path for the mechanism platform is formulated by using a third order exponential function. It is shown that the linearised model parameters vary significantly at high motion speeds, hence it is necessary to use adaptive controllers for high performance.


2020 ◽  
Vol 65 (1) ◽  
pp. 1-19
Author(s):  
Djamel Rezgui ◽  
Mark H. Lowenberg

Despite current research advances in aircraft dynamics and increased interest in the slowed rotor concept for high-speed compound helicopters, the stability of autogyro rotors remains partially understood, particularly at lightly loaded conditions and high advance ratios. In autorotation, the periodic behavior of a rotor blade is a complex nonlinear phenomenon, further complicated by the fact that the rotor speed is not held constant. The aim of the analysis presented in this article is to investigate the underlying mechanisms that can lead to rotation-flap blade instability at high advance ratios for a teetering autorotating rotor. The stability analysis was conducted via wind tunnel tests of a scaled autogyro model combined with numerical continuation and bifurcation analysis. The investigation assessed the effect of varying the flow speed, blade pitch angle, and rotor shaft tilt relative to the flow on the rotor performance and blade stability. The results revealed that rotor instability in autorotation is associated with the existence of fold bifurcations, which bound the control-input and design parameter space within which the rotor can autorotate. This instability occurs at a lightly loaded condition and at advance ratios close to 1 for the scaled model. Finally, it was also revealed that the rotor inability to autorotate was driven by blade stall.


Sign in / Sign up

Export Citation Format

Share Document