Review of Wastewater Treatment Technologies for Application in Communities in the Amazonian Varzea

2011 ◽  
Vol 7 (1) ◽  
pp. 59-69 ◽  
Author(s):  
João Paulo Borges Pedro ◽  
Maria Cecília Rosinski Lima Gomes ◽  
Ana Claudeíse Silva do Nascimento
1994 ◽  
Vol 30 (5) ◽  
pp. 87-95 ◽  
Author(s):  
Susan E. Murcott ◽  
Donald R. F. Harleman

In the past decade, the development of polymers and new chemical technologies has opened the way to using low doses of chemicals in wastewater treatment. “Chemical upgrading” (CU) is defined in this paper as an application of these chemical technologies to upgrade overloaded treatment systems (typically consisting of conventional primary plus biological treatment) in Central and Eastern European (CEE) countries. Although some of the chemical treatment technologies are proven ones in North America, Scandinavia, and Germany, a host of factors, for example, the variations in composition and degree of pollution, the type of technologies in use, the type and mix of industrial and domestic sewage, and the amount of surface water, had meant that the viability of using CU in CEE countries was unknown. This report describes the first jar tests of CU conducted during the summer of 1993. The experiments show CU's ability to improve wastewater treatment plant performance and to potentially assist in the significant problem of overloaded treatment plants. Increased removal of BOD, TSS, and P in the primary stage of treatment is obtained at overflow rates above 1.5 m/h, using reasonably priced, local sources of metal salts in concentrations of 25 to 50 mg/l without polymers.


2007 ◽  
Vol 372 (2-3) ◽  
pp. 361-371 ◽  
Author(s):  
A GOBEL ◽  
C MCARDELL ◽  
A JOSS ◽  
H SIEGRIST ◽  
W GIGER

2012 ◽  
Vol 535-537 ◽  
pp. 2201-2208
Author(s):  
Yong Wang ◽  
Jie Nian Jie ◽  
Zhi Yong Li ◽  
Li Guo Wang ◽  
Jiang Wu ◽  
...  

Oily sewage is one of the wastes produced in the oil industry production process and its quantity has been increasing year by year, which influences the environment and human health severely. Electric flocculation method is one of the wide application electrochemical treatment technologies for the oily wastewater treatment at home and abroad, which has higher efficiency than other technologies at the aspect of the organic pollutants degradation. A simulative experiment device dealing with heavy oil sewage by the electric flocculation method has been designed in this paper. The mechanism of the electric flocculation method in removing organic matter of the heavy oil sewage by analyzing the change of the composition and content of the organic matter in water samples before and after the process of the electric flocculation has been studied. Research results show: the carbon/tin dioxide electrode is better than the carbon/ ruthenium dioxide electrode in removing organic matter; most alkanes matters in the oily wastewater have been removed in the dispersing oil form by the electric flocculation; as the current density increases, the types and quantity of the response organic matter can be improved while types of the new synthetic organics increase. At the same time, this paper provides a theory support in specific optimization of the electricity flocculation flotation in oily wastewater treatment technology and process.


2012 ◽  
Vol 40 (9) ◽  
pp. 926-932 ◽  
Author(s):  
Adalberto Noyola ◽  
Alejandro Padilla-Rivera ◽  
Juan Manuel Morgan-Sagastume ◽  
Leonor Patricia Güereca ◽  
Flor Hernández-Padilla

2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


2006 ◽  
Vol 53 (11) ◽  
pp. 1-9 ◽  
Author(s):  
A.J. Englande ◽  
W.W. Eckenfelder ◽  
G. Jin

The focus of this paper is on variability concerns in wastewater treatment and approaches to control unacceptable fluctuations in effluent quality. Areas considered include: factors contributing to variability in both waste loads and process technology performance; variability assessment; control of variability employing the process best management practice (BMP); design/operation of biological waste treatment technologies for variability reduction; and modelling to enhance process control.


Author(s):  
М.В. Кевбрина ◽  
А.М. Гаврилин ◽  
А.А. Пронин

Рассмотрен опыт внедрения современных технологий очистки сточных вод на очистных сооружениях г. Москвы, описаны технологические схемы для сооружений разной производительности. С конца 1990-х годов Инженерно-технологическим центром АО «Мосводоканал» проводились работы по разработке и внедрению современных технологий очистки сточных вод с удалением биогенных элементов. Поскольку состав сточных вод имеет отличия на разных очистных сооружениях, не удается «перенести» зарубежные технологии без изменения и адаптации, а иногда требуется разработка технологии «с нуля». Более чем за 20-летний период осуществлено поэтапное внедрение современных технологий на московских очистных сооружениях Южного Бутова и Зеленограда, блока удаления биогенных элементов Люберецких очистных сооружений (БУБЭ ЛОС), нового блока Курьяновских очистных сооружений (НКОС). В настоящее время идет реконструкция ЛОС (старый и новый блоки), планируется реконструкция старого блока КОС, в процессе реконструкции находятся очистные сооружения Троицкого и Новомосковского административных округов (ТиНАО) г. Москвы. Опыт АО «Мосводоканал» был использован при разработке справочника наилучших доступных технологий ИТС 10-2015. Разнообразие технологических решений позволяет обеспечить нормативное качество очистки для условий разных сооружений. The experience of introducing advanced technologies for wastewater treatment at the wastewater treatment facilities in Moscow is considered; process flow schemes for the structures of different capacities are described. Since the late 1990s, the Engineering and Technology Center of Mosvodokanal JSC has been working on the development and introduction of advanced wastewater treatment technologies with the removal of nutrients. Since the composition of wastewater differs at different treatment facilities, it is not possible to "transfer" foreign technologies without correction and adaptation; moreover, sometimes the development of technology "from square one" is required. For more than 20 years, a stepwise introduction of advanced technologies has been carried out at the Moscow treatment facilities of South Butovo and Zelenograd, at the nutrients removal block at the Lyuberetskie wastewater treatment facilities, at the new block of the Kurianovskie Wastewater Treatment Facilities. At present, the reconstruction of the Lyuberetskie Wastewater Treatment Facilities (old and new blocks) is underway, the reconstruction of the old part of the Kurianovskie Wastewater Treatment Facilities is planned, the treatment facilities of the Troitsk and Novomoskovsk administrative districts in Moscow have been under upgrade. The experience of Mosvodokanal JSC was used in the development of an ITS 10-2015 reference book of the best available technologies. A variety of process solutions provides for ensuring the standard quality of effluent for the conditions of different facilities.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.


Sign in / Sign up

Export Citation Format

Share Document