Performance evaluation of different wastewater treatment technologies operating in a developing country

2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.

2007 ◽  
Vol 56 (10) ◽  
pp. 65-71 ◽  
Author(s):  
S. Maunoir ◽  
H. Philip ◽  
A. Rambaud

Research work has been carried out for more than 20 years by Eparco and the University of Montpellier (France) on the application of biological wastewater treatment processes for small communities. This research has led to a new process which is particularly suitable for remote populations, taking into account several specificities such as as the seasonal fluctuations in the population, the accessibility of the site, the absence of a power supply on site, the reduced area of land available and the low maintenance. Thus, the process, which combines a septic tank operating under anaerobic conditions and a biological aerobic filter, is a solution for wastewater treatment in mountain areas. This paper presents the process and three full-scale applications in the region of the Alps.


Author(s):  
Mira Petrovic ◽  
Maria Jose Lopez de Alda ◽  
Silvia Diaz-Cruz ◽  
Cristina Postigo ◽  
Jelena Radjenovic ◽  
...  

Pharmaceutically active compounds (PhACs) and drugs of abuse (DAs) are two important groups of emerging environmental contaminants that have raised an increasing interest in the scientific community. A number of studies revealed their presence in the environment. This is mainly due to the fact that some compounds are not efficiently removed during wastewater treatment processes, being able to reach surface and groundwater and subsequently, drinking waters. This paper reviews the data regarding the levels of pharmaceuticals and illicit drugs detected in wastewaters and gives an overview of their removal by conventional treatment technologies (applying activated sludge) as well as advanced treatments such as membrane bioreactor. The paper also gives an overview of bank filtration practices at managed aquifer recharge sites and discusses the potential of this approach to mitigate the contamination by PhACs and DAs.


2008 ◽  
Vol 58 (10) ◽  
pp. 2001-2008 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

The paper analyses the capability of 166 full-scale wastewater treatment plants operating in Brazil, in order to achieve different quality targets for wastewater discharge. These targets cover a wide range of possible situations, reflecting usual practices adopted worldwide. Six different treatment processes have been investigated: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The parameters investigated were: BOD, COD, suspended solids, total nitrogen, total phosphorus and thermotolerant coliforms. Most technologies showed a poor performance, and some of them were not capable to achieve even relaxed standards. The paper presents elements for setting up discharge standards in developing countries, based either on values that may be achieved by treatment processes commonly applied or on best available technologies.


Author(s):  
Sibel Barisci ◽  
Rominder Suri

Abstract The presence of poly- and perfluoroalkyl substances (PFAS) has caused serious problems for drinking water supplies especially at intake locations close to PFAS manufacturing facilities, wastewater treatment plants (WWTPs), and sites where PFAS containing firefighting foam was regularly used. Although monitoring is increasing, knowledge on PFAS occurrences particularly in municipal and industrial effluents is still relatively low. Even though the production of C8-based PFAS has been phased out, they are still being detected at many WWTPs. Emerging PFAS such as GenX and F-53B are also beginning to be reported in aquatic environments. This paper presents a broad review and discussion on the occurrence of PFAS in municipal and industrial wastewater which appear to be their main sources. Carbon adsorption and ion exchange are currently used treatment technologies for PFAS removal. However, these methods have been reported to be ineffective for the removal of short-chain PFAS. Several pioneering treatment technologies, such as electrooxidation, ultrasound, and plasma have been reported for PFAS degradation. Nevertheless, in-depth research should be performed for the applicability of emerging technologies for real-world applications. This paper examines different technologies and helps to understand the research needs to improve the development of treatment processes for PFAS in wastewater streams.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 65-72 ◽  
Author(s):  
H.-H. Schierup ◽  
H. Brix

Since 1983 approximately 150 full-scale emergent hydrophyte based wastewater treatment plants (reed beds) have been constructed in Denmark to serve small wastewater producers. The development of purification performance for 21 plants representing different soil types, vegetation, and hydraulic loading rates has been recorded. Cleaning efficiencies were typically in the range of 60-80% reduction for BOD, 25-50% reduction for total nitrogen, and 20-40% reduction for total phosphorus. The mean effluent BOD, total nitrogen and total phosphorus concentrations of the reed beds were 19 ± 10, 22 ± 9 and 6.7 ± 3.2 mg/l (mean ± SD), respectively. Thus, the general Danish effluent standards of 8 mg/l for N and 1.5 mg/l for P for sewage plants greater than 5,000 PE cannot be met by the present realised design of EHTS. The main problem observed in most systems is a poor development of horizontal hydraulic conductivity in the soil which results in surface run-off. Since the political demands for effluent quality will be more strict in the future, it is important to improve the performance of small decentral sewage treatment plants. On the basis of experiences from different types of macrophyte based and conventional low-technology wastewater treatment systems, a multi-stage system is suggested, consisting of sedimentation and sand filtration facilities followed by basins planted with emergent and submergent species of macrophytes and algal ponds.


1996 ◽  
Vol 33 (1) ◽  
pp. 81-87
Author(s):  
L. Van Vooren ◽  
P. Willems ◽  
J. P. Ottoy ◽  
G. C. Vansteenkiste ◽  
W. Verstraete

The use of an automatic on-line titration unit for monitoring the effluent quality of wastewater plants is presented. Buffer capacity curves of different effluent types were studied and validation results are presented for both domestic and industrial full-scale wastewater treatment plants. Ammonium and ortho-phosphate monitoring of the effluent were established by using a simple titration device, connected to a data-interpretation unit. The use of this sensor as the activator of an effluent quality proportional sampler is discussed.


1993 ◽  
Vol 28 (10) ◽  
pp. 33-41
Author(s):  
Jes la Cour Jansen ◽  
Bodil Mose Pedersen ◽  
Erik Moldt

Influent and effluent data from about 120 small wastewater treatment plants (100 - 2000 PE) have been collected and processed. Seven different types of plants are represented. The effluent quality and the treatment efficiency have been evaluated. The most common type of plant is mechanical/biological treatment plants. Some of them are nitrifying and some are also extended for chemical precipitation of phosphorus. Constructed wetlands and biological sandfilters are also represented among the small wastewater treatment plants.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Sign in / Sign up

Export Citation Format

Share Document