scholarly journals Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Prashant Agarwal ◽  
Ritika Gupta ◽  
Neeraj Agarwal

Rapid industrialization, economic development, and population overgrowth are the major reasons responsible for the release of organic and inorganic substances into the environment, further leading to environmental pollution and contamination of water. Nowadays, it is truism that wastewater treatment has raised concern worldwide and is the need of the hour. Therefore, it is necessary to conserve sustainable energy and adopt advanced wastewater treatment technologies. Microalgae culture is gaining tremendous attention as it provides a combined benefit of treating wastewater as a growth medium and algae biomass production which can be used for several livestock purposes. Microalgae are ubiquitous and extremely diverse microorganisms which can accumulate toxic contaminants and heavy metals from wastewater, making them superior contender to become a powerful nanofactory. Furthermore, they are versatile, relatively convenient, and easy to handle, along with various other advantages such as synthesis can be performed at low temperature with greater energy efficiency, less toxicity, and low risk to the environment. Comparing with other organisms such as fungi, yeast, and bacteria, microalgae are equally important organisms in the synthesis of nanoparticles; therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a newer branch and it has been termed as phytonanotechnology. Here, an overview of recent advances in wastewater treatment processes through an amalgamation of nanoparticles and microalgae is provided.

2011 ◽  
Vol 1 (1) ◽  
pp. 37-56 ◽  
Author(s):  
Sílvia C. Oliveira ◽  
Marcos von Sperling

This article analyses the performance of 166 wastewater treatment plants operating in Brazil, comprising six different treatment processes: septic tank + anaerobic filter, facultative pond, anaerobic pond + facultative pond, activated sludge, UASB reactors alone, UASB reactors followed by post-treatment. The study evaluates and compares the observed effluent quality and the removal efficiencies in terms of BOD, COD, TSS, TN, TP and FC with typical values reported in the technical literature. In view of the large performance variability observed, the existence of a relationship between design/operational parameters and treatment performance was investigated. From the results obtained, no consistent relationship between loading rates and effluent quality was found. The influence of loading rates differed from plant to plant, and the effluent quality was dictated by several combined factors related to design and operation.


The rapid growth of the industries and population leads to increasing generation of industrial and municipal wastewater. This wastewater threatens directly or indirectly the human health and industrial processes. Therefore, it is necessary to develop a rapid, simple, eco-friendly, effective, and efficient method for eliminating pollutants from industrial and municipal wastewater. The wastewater treatment aims to remove pollutants including particles, organic/inorganic substances, and pathogenic microorganisms, and finally returned to the cycle. This chapter presents a brief introduction to the issue associated with municipal and industrial wastewater. Also, this chapter presents detailed information about the conventional wastewater treatment methods. Specifically, it discusses the steps involved in the wastewater treatment viz. primary, secondary, and tertiary treatment.


The Analyst ◽  
2018 ◽  
Vol 143 (23) ◽  
pp. 5629-5645 ◽  
Author(s):  
Piumie Rajapaksha P. ◽  
Aoife Power ◽  
Shaneel Chandra ◽  
James Chapman

The availability of safe water has a significant impact on all parts of society, its growth and sustainability, both politically and socioeconomically.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Ali R. Ahmadi Motlagh ◽  
Stephen Lacy ◽  
Madan Arora ◽  
Jim Ross ◽  
Jeff Misenhimer

With shortage of water becoming a major concern in many areas, use of recycled water is a necessity for a growing number of municipalities. This paper describes a case study in which two alternatives were considered for upgrading an existing wastewater treatment plant with the goal of producing recycled water. The first alternative consisted of conventional secondary and tertiary unit processes while the second alternative included the advanced treatment technology of membrane bioreactor (MBR). Also, two alternatives were evaluated for disinfection of recycled water; chlorine gas and UV system. The more advanced treatment technologies (MBR + UV), which produce the higher quality recycled water, resulted in higher cost. The paper discusses the design and project execution approaches as how the more expensive advanced treatment processes were made cost competitive with the conventional treatment processes.


Author(s):  
Tehseen Yaseen ◽  
Anum Yaseen

Nanotechnology is the area of nano science that shows great potential to establish a new process for wastewater treatment. It has been applied on a nanometer scale level. Currently, limited water resources and real treatment of wastewater is a chief requirement for the growing economy. It is in great demand to introduce the progressive wastewater treatment technologies. Therefore, the modern innovative processes in nanomaterial sciences have been appealing the target of scientists. The chapter addresses the developments in nanotechnology with respect to wastewater treatment, especially the removal of heavy metals and to the environmental applications. It will discuss the application of different classes of nanomaterials for wastewater treatment in removal of heavy metals and its possible effects to the environment. Therefore, the scope is to offer an overview of how nanomaterials are causing concerns related to heavy metal removal for water and in the surrounding environment.


Author(s):  
Manoj Kumar Karnena ◽  
Madhavi Konni ◽  
Vara Saritha

The rapid increase in population and urbanization leads to the scarcity of water resources in the present era. Therefore, effective wastewater treatment is a prerequisite for a growing economy. Development and implementing the advanced treatment technologies of wastewater with high efficiency and low capital is difficult. In the recent advancements among various treatment processes, nanomaterial science has been attracting the attention of researchers. However, limited collective knowledge is available in this context. The chapter reviews the potential of nano catalysis's process, mechanism, and current drawbacks in treatment technologies. It explains the different nano catalysts that are widely utilized for the treatment and removal of organic and inorganic pollutants in water and wastewater and discusses the nano-based photocatalytic, nano-based electrocatalysis, nano-based Fenton catalysis and their efficiency in various removal of pollutants from wastewater.


Sign in / Sign up

Export Citation Format

Share Document