scholarly journals COLOR RECOGNITION WEARABLE DEVICE USING MACHINE LEARNING FOR VISUALY IMPAIRED PERSON

2018 ◽  
Vol 19 (2) ◽  
pp. 213-220
Author(s):  
NIK NUR WAHIDAH NIK HASHIM ◽  
TAREK MOHAMED BOLAD ◽  
Noor Hazrin Hany Mohamad Hanif

ABSTRACT: Recognizing colors is a concerning problem for the visually impaired person. The aim of this paper is to convert colors to sound and vibration in order to allow fully/partially blind people to have a ‘feeling’ or better understanding of the different colors around them. The idea is to develop a device that can produce vibration for colors. The user can also hear the name of the color along with ‘feeling’ the vibration. Two algorithms were used to distinguish between colors;  RGB to HSV color conversion in comparison with neural network and decision tree based machine learning algorithms. Raspberry Pi 3 with Open Source Computer Vision (OpenCV) software handles the image processing. The results for RGB to HSV color conversion algorithm were performed with 3 different colors (red, blue, and green). In addition, neural network and decision tree algorithms were trained and tested with eight colors (red, green, blue, orange, yellow, purple, white, and black) for the conversion to sound and vibration. Neural network and decision tree algorithms achieved higher accuracy and efficiency for the majority of tested colors as compared to the RGB to HSV. ABSTRAK: Membezakan antara warna adalah masalah yang merunsingkan terutamanya kepada mereka yang buta, separa buta atau buta warna. Tujuan kertas penyelidikan ini adalah untuk membentangkan kaedah menukar warna kepada bunyi dan getaran bagi membolehkan individu yang buta, separa buta atau buta warna untuk mendapat ‘perasaan’ atau pemahaman yang lebih baik tentang warna-warna yang berbeza disekeliling mereka. Idea yang dicadangkan adalah dengan membuat sebuah alat yang dapat menghasilkan getaran bagi setiap warna yang berbeza. Disamping itu, pengguna juga dapat mendengar nama warna tersebut. Algoritma yang digunakan untuk membezakan antara warna adalah penukaran warna RGB kepada HSV yang dibandingkan dengan rangkaian neural dan algoritma pembelajaran mesin berasaskan pokok keputusan. Raspberry Pi 3 bersaiz kad kredit dengan perisian Open Source Computer Vision (OpenCV) mengendalikan pemprosesan imej. Hasil algoritma penukaran warna RGB kepada HSV telah dilakukan dengan tiga warna yang berbeza (merah, biru, dan hijau). Tambahan pula, hasil rangkaian neural dan algoritma berasaskan pokok keputusan telah dilakukan dengan lapan warna (merah, hijau, biru, oren, kuning, ungu, putih, dan hitam) dengan penukaran warna tersebut kepada bunyi dan getaran. Selain itu, hasil rangkaian neural dan algoritma berasaskan pokok keputusan mencapai hasil dapatan yang baik dengan ketepatan dan kecekapan yang tinggi bagi kebanyakan warna yang diuji berbanding RGB kepada HSV.

Author(s):  
Tanujit Chakraborty

Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980s. On the other hand, deep learning methods have boosted the capacity of machine learning algorithms and are now being used for non-trivial applications in various applied domains. But training a fully-connected deep feed-forward network by gradient-descent backpropagation is slow and requires arbitrary choices regarding the number of hidden units and layers. In this paper, we propose near-optimal neural regression trees, intending to make it much faster than deep feed-forward networks and for which it is not essential to specify the number of hidden units in the hidden layers of the neural network in advance. The key idea is to construct a decision tree and then simulate the decision tree with a neural network. This work aims to build a mathematical formulation of neural trees and gain the complementary benefits of both sparse optimal decision trees and neural trees. We propose near-optimal sparse neural trees (NSNT) that is shown to be asymptotically consistent and robust in nature. Additionally, the proposed NSNT model obtain a fast rate of convergence which is near-optimal up to some logarithmic factor. We comprehensively benchmark the proposed method on a sample of 80 datasets (40 classification datasets and 40 regression datasets) from the UCI machine learning repository. We establish that the proposed method is likely to outperform the current state-of-the-art methods (random forest, XGBoost, optimal classification tree, and near-optimal nonlinear trees) for the majority of the datasets.


Author(s):  
Tanujit Chakraborty ◽  
Tanmoy Chakraborty

Decision tree algorithms have been among the most popular algorithms for interpretable (transparent) machine learning since the early 1980s. On the other hand, deep learning methods have boosted the capacity of machine learning algorithms and are now being used for non-trivial applications in various applied domains. But training a fully-connected deep feed-forward network by gradient-descent backpropagation is slow and requires arbitrary choices regarding the number of hidden units and layers. In this paper, we propose near-optimal neural regression trees, intending to make it much faster than deep feed-forward networks and for which it is not essential to specify the number of hidden units in the hidden layers of the neural network in advance. The key idea is to construct a decision tree and then simulate the decision tree with a neural network. This work aims to build a mathematical formulation of neural trees and gain the complementary benefits of both sparse optimal decision trees and neural trees. We propose near-optimal sparse neural trees (NSNT) that is shown to be asymptotically consistent and robust in nature. Additionally, the proposed NSNT model obtain a fast rate of convergence which is near-optimal upto some logarithmic factor. We comprehensively benchmark the proposed method on a sample of 80 datasets (40 classification datasets and 40 regression datasets) from the UCI machine learning repository. We establish that the proposed method is likely to outperform the current state-of-the-art methods (random forest, XGBoost, optimal classification tree, and near-optimal nonlinear trees) for the majority of the datasets.


Author(s):  
Denis Sato ◽  
Adroaldo José Zanella ◽  
Ernane Xavier Costa

Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, different mitigation systems have been applied in various regions of the world. In this article, a system for detecting animals on highways is presented using computer vision and machine learning algorithms. The models were trained to classify two groups of animals: capybaras and donkeys. Two variants of the convolutional neural network called Yolo (You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by reducing or preventing accidents with animals.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6928
Author(s):  
Łukasz Wojtecki ◽  
Sebastian Iwaszenko ◽  
Derek B. Apel ◽  
Tomasz Cichy

Rockburst is a dynamic rock mass failure occurring during underground mining under unfavorable stress conditions. The rockburst phenomenon concerns openings in different rocks and is generally correlated with high stress in the rock mass. As a result of rockburst, underground excavations lose their functionality, the infrastructure is damaged, and the working conditions become unsafe. Assessing rockburst hazards in underground excavations becomes particularly important with the increasing mining depth and the mining-induced stresses. Nowadays, rockburst risk prediction is based mainly on various indicators. However, some attempts have been made to apply machine learning algorithms for this purpose. For this article, we employed an extensive range of machine learning algorithms, e.g., an artificial neural network, decision tree, random forest, and gradient boosting, to estimate the rockburst risk in galleries in one of the deep hard coal mines in the Upper Silesian Coal Basin, Poland. With the use of these algorithms, we proposed rockburst risk prediction models. Neural network and decision tree models were most effective in assessing whether a rockburst occurred in an analyzed case, taking into account the average value of the recall parameter. In three randomly selected datasets, the artificial neural network models were able to identify all of the rockbursts.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 42
Author(s):  
Amber Goel ◽  
Apaar Khurana ◽  
Pranav Sehgal ◽  
K Suganthi

The paper focuses on two areas, automation and security. Raspberry Pi is the heart of the project and it is fuelled by Machine Learning Algorithms using Open CV and Internet of Things. Face recognition uses Linear Binary Pattern and if an unknown person uses their workstation, a message will be sent to the respective person with the photo of the person who uses the workstation. Face recognition is also being used for uploading attendance and switching ON and OFF appliances automatically. During un-official hours, A Human Detection algorithm is being used to detect the human presence. If an unknown person enters the office, a photo of the person will be taken and sent to the authorities. This technology is a combination of Computer Vision, Machine learning and Internet of things, that serves to be an efficient tool for both automation and security.  


2018 ◽  
Vol 10 (12) ◽  
pp. 758-767 ◽  
Author(s):  
Zhixiong Zhang ◽  
Lili Chen ◽  
Brock Humphries ◽  
Riley Brien ◽  
Max S. Wicha ◽  
...  

Cell migratory direction and speed are predicted based on morphological features using computer vision and machine learning algorithms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258788
Author(s):  
Sarra Ayouni ◽  
Fahima Hajjej ◽  
Mohamed Maddeh ◽  
Shaha Al-Otaibi

The educational research is increasingly emphasizing the potential of student engagement and its impact on performance, retention and persistence. This construct has emerged as an important paradigm in the higher education field for many decades. However, evaluating and predicting the student’s engagement level in an online environment remains a challenge. The purpose of this study is to suggest an intelligent predictive system that predicts the student’s engagement level and then provides the students with feedback to enhance their motivation and dedication. Three categories of students are defined depending on their engagement level (Not Engaged, Passively Engaged, and Actively Engaged). We applied three different machine-learning algorithms, namely Decision Tree, Support Vector Machine and Artificial Neural Network, to students’ activities recorded in Learning Management System reports. The results demonstrate that machine learning algorithms could predict the student’s engagement level. In addition, according to the performance metrics of the different algorithms, the Artificial Neural Network has a greater accuracy rate (85%) compared to the Support Vector Machine (80%) and Decision Tree (75%) classification techniques. Based on these results, the intelligent predictive system sends feedback to the students and alerts the instructor once a student’s engagement level decreases. The instructor can identify the students’ difficulties during the course and motivate them through e-mail reminders, course messages, or scheduling an online meeting.


Author(s):  
Amal Alhamad ◽  
Dalal Aldablan ◽  
Raghad Albahlal

The most powerful attack on the systems is Social Engineering Attack because of this attack deals with Psychology so that there is no hardware or software can prevent it or even can defend it and hence people need to be trained to defend against it.[1] Social engineering is mostly done by phone or email. In this research, which is based on previous research we have conducted, the aim of it was of it was to highlight the different social engineering attacks and how they can prevent in social network because social engineering is one of the biggest problems in social network, a concern the privacy and security. This project is using a set of data then analysis it uses the Weka tool, to defend against these attacks we have evaluated three decision tree algorithms, RandomForest, REPTree and RandomTree. It was also related to an J48 algorithm, On the contrary, here contains a complete overview of social engineering attacks, also more than one algorithm was searched.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Luana Ibiapina Cordeiro Calíope Pinheiro ◽  
Maria Lúcia Duarte Pereira ◽  
Marcial Porto Fernandez ◽  
Francisco Mardônio Vieira Filho ◽  
Wilson Jorge Correia Pinto de Abreu ◽  
...  

Dementia interferes with the individual’s motor, behavioural, and intellectual functions, causing him to be unable to perform instrumental activities of daily living. This study is aimed at identifying the best performing algorithm and the most relevant characteristics to categorise individuals with HIV/AIDS at high risk of dementia from the application of data mining. Principal component analysis (PCA) algorithm was used and tested comparatively between the following machine learning algorithms: logistic regression, decision tree, neural network, KNN, and random forest. The database used for this study was built from the data collection of 270 individuals infected with HIV/AIDS and followed up at the outpatient clinic of a reference hospital for infectious and parasitic diseases in the State of Ceará, Brazil, from January to April 2019. Also, the performance of the algorithms was analysed for the 104 characteristics available in the database; then, with the reduction of dimensionality, there was an improvement in the quality of the machine learning algorithms and identified that during the tests, even losing about 30% of the variation. Besides, when considering only 23 characteristics, the precision of the algorithms was 86% in random forest, 56% logistic regression, 68% decision tree, 60% KNN, and 59% neural network. The random forest algorithm proved to be more effective than the others, obtaining 84% precision and 86% accuracy.


Sign in / Sign up

Export Citation Format

Share Document