scholarly journals Genetic Variability in Root and Shoot Growth Characteristics of Peanut1,2

1982 ◽  
Vol 9 (2) ◽  
pp. 68-72 ◽  
Author(s):  
D. L. Ketring ◽  
W. R. Jordan ◽  
O. D. Smith ◽  
C. E. Simpson

Abstract The shape and extent of root systems influence the rate and pattern of nutrient and water uptake from the soil. In dicotyledons such as peanut (Arachis hypogaea L.), the primary root and its laterals constitute the main root system. Rooting trait differences in some crops have been associated with drought tolerance. Our objective in this study was to determine if variation in root length and number occurs among peanut genotypes. In one test, shoot and root growth of 23 genotypes (12 spanish and 11 virginia types) were compared in the greenhouse at 55 days after planting using clear acrylic tubes 7.5 cm in diameter and 2.2 m in length. Shoot dry weight, leaf area, tap root length, and root number at 1 m depth ranged for spanish-type entries from 1.23 to 2.65 g, 214 to 409 cm2, 95.0 to 186.8 cm, and 1.0 to 3.1, respectively. Similarly, ranges for virginia-type entries were 1.35 to 3.23 g, 135 to 460 cm2, 122.4 to 192.6 cm, and 1.0 to 7.1. Correlations between shoot and root parameters indicated strong positive association between aerial and subterranean growth. However, the relationship of leaf area to root length was stronger for virginia- than for spanish-type entries. Root length and numbers were highly correlated for spanish, but not for virginia entries. In other tests that included two each of virginia-, spanish-, and valencia-type entries, similar results were found for plants at 34 and 47 days after planting. Significant differences in both root (length and numbers) and shoot growth (dry weight and leaf area) were found among the genotypes tested. Inherent differences in root growth rate were evident at early stages of seedling growth. The results from this sample of peanut germplasm indicate that there is considerable diversity in root growth and there is high shoot/root growth association.

HortScience ◽  
2004 ◽  
Vol 39 (2) ◽  
pp. 243-247 ◽  
Author(s):  
Amy N. Wright ◽  
Stuart L. Warren ◽  
Frank A. Blazich ◽  
Udo Blum

The length of time between transplanting and subsequent new root initiation, root growth rates, and root growth periodicity influences the ability of woody ornamentals to survive transplanting and become established in the landscape. Research was conducted to compare root growth of a difficult-to-transplant species, Kalmia latifolia L. (mountain laurel), to that of an easy-to-transplant species, Ilex crenata Thunb. (Japanese holly), over the course of 1 year. Micropropagated liners of `Sarah' mountain laurel and rooted stem cuttings of `Compacta' holly were potted in 3-L containers. Plants were grown in a greenhouse from May to September, at which time they were moved outside to a gravel pad, where they remained until the following May. Destructive plant harvests were conducted every 2 to 4 weeks for 1 year. At each harvest, leaf area, shoot dry weight (stems and leaves), root length, root area, and root dry weight were determined. Throughout the experiment, shoot dry weight and leaf area were similar for the two species. New root growth of `Compacta' holly and `Sarah' mountain laurel was measurable 15 and 30 days after potting, respectively. Root length and root area of `Sarah' mountain laurel increased during May through December but decreased during January through May. Root length and root area of `Compacta' holly increased linearly throughout the course of the experiment. Final root: shoot ratio of `Sarah' mountain laurel was one-ninth that of `Compacta' holly. Results suggest that poor transplant performance of mountain laurel in the landscape may be related to its slow rate of root growth.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 679f-680
Author(s):  
Myra Stafford ◽  
Robert L. Geneve ◽  
Jack W. Buxton

This study evaluated the effect of container shape and copper hydroxide on root and shoot development of marigold (Tagetes patula `Little Devil Flame') seedlings. Containers were modified in shape and volume by gluing triangular polycarbonate inserts vertically onto sides of the container. The inserts were either painted with copper or not painted. Inserts decreased container volumes (no insert = 480 cm3, two inserts = 340 cm3, and four inserts = 200 cm3). After 38 days the seedling roots were scanned for computer analysis, and leaf area and dry weights were determined. Copper effectively prevented roots from growing in contact with copper treated surfaces. Shoot dry weight and leaf area were greater with no inserts, but if inserts were treated with copper the shoot dry weight and leaf area were greater. Root dry weight was reduced 7%–10 % with two inserts and 20% with four inserts compared to no inserts. Copper treated inserts reduced the dry weight further. However, at the insert interface, root length was increased between 15%–20% by all copper treatments, with the greatest increase in the four-insert treatment.


2015 ◽  
Vol 33 (3) ◽  
pp. 137-141
Author(s):  
Bruce R. Roberts ◽  
Chris Wolverton ◽  
Samantha West

The efficacy of treating soilless substrate with a commercial humectant was tested as a means of suppressing drought stress in 4-week-old container-grown Zinnia elegans Jacq. ‘Thumbelina’. The humectant was applied as a substrate amendment at concentrations of 0.0, 0.8, 1.6 and 3.2% by volume prior to withholding irrigation. An untreated, well-watered control was also included. The substrate of treated plants was allowed to dry until the foliage wilted, at which time the plants were harvested and the following measurements taken: number of days to wilt (DTW), xylem water potential (ψx), shoot growth (shoot dry weight, leaf area) and root growth (length, diameter, surface area, volume, dry weight). For drought-stressed plants grown in humectant-treated substrate at concentrations of 1.6 and 3.2%, DTW increased 25 and 33%, respectively. A linear decrease in ψx was observed as the concentration of humectant increased from 0.0 to 3.2%. Linear trends were also noted for both volumetric moisture content (positive) and evapotranspiration (negative) as the concentration of humectant increased. For non-irrigated, untreated plants, stress inhibited shoot growth more than root growth, resulting in a lower root:shoot ratio. For non-irrigated, humectant-treated plants, the length of fine, water-absorbing roots increased linearly as humectant concentration increased from 0.0 to 3.2%. Using humectant-amended substrates may be a management option for mitigating the symptoms of drought stress during the production of container-grown bedding plants such as Z. elegans.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 551b-551
Author(s):  
Carleton B Wood ◽  
Timothy J. Smalley ◽  
Mark Rieger

Container-grown Viburnum plicatum var. tomentosum `Mariesii' were planted in tilled beds and tilled beds amended with aged pine bark. After transplanting, plants were fertilized at three different rates: no fertilizer, 18.4 g of N m-2, and 36.8 g of N m-2. A 31 day drought was begun 73 days after planting. Fertilization of tilled plots induced ammonium toxicity, which caused a linear reduction in leaf area, shoot dry weight, and root dry weight. Fertilization of amended plots had no effect on shoot growth but reduced mot growth by 54%; thus, amendments ameliorated ammonium toxicity. Between 10 and 28 days after beginning the drought, plants in unfertilized-amended plots maintained higher relative leaf water contents (RLWC) and relative leaf expansion rates (RLER) than plants in unfertilized-tilled plots. Amendment induced nitrogen deficiencies contributed to the increased drought tolerance of plants from unfertilized-amended plots. Since fertilized plants developed symptoms of ammonium toxicity, we were unable to determine if increasing fertility would counteract the drought tolerance conferred by pine bark soil amendments.


1995 ◽  
Vol 9 (2) ◽  
pp. 277-280 ◽  
Author(s):  
J. K. Peterson ◽  
H. F. Harrison

The allelopathic influence of sweet potato cultivar ‘Regal’ on purple nutsedge was compared to the influence on yellow nutsedge under controlled conditions. Purple nutsedge shoot dry weight, total shoot length and tuber numbers were significantly lower than the controls (47, 36, and 19% inhibition, respectively). The influence on the same parameters for yellow nutsedge (35, 21, and 43% inhibition, respectively) were not significantly different from purple nutsedge. Sweet potato shoot dry weight was inhibited by purple and yellow nutsedge by 42% and 45%, respectively. The major allelopathic substance from ‘Regal’ root periderm tissue was isolated and tested in vitro on the two sedges. The I50's for shoot growth, root number, and root length were 118, 62, and 44 μg/ml, respectively, for yellow nutsedge. The I50's for root number and root length were 91 and 85 μg/ml, respectively, for purple nutsedge and the I50for shoot growth could not be calculated.


2020 ◽  
Vol 8 (1) ◽  
pp. 65-70
Author(s):  
Nisha Niraula ◽  
Anil Timilsina

The productivity of crops is highly affected by the seedling quality, which is governed by seeding density in the nursery. So, an experiment was conducted to explore the effect of seedling spacing in the growth attributes of Broad Leaf Mustard cv. “Marpha Chauda Paate” at IAAS, Lamjung Campus, during Oct 2018. Four spacing treatments viz 0.5 cm × 1 cm, 1 cm × 1 cm, 1.5 cm ×1.5 cm and 2 cm × 2 cm were arranged in RCB Design with 5 replications. Observation of seedling height, leaf area, leaf number, shoot & root fresh weights, shoot dry matter, and dry matter percentage from twenty-three days old seedlings were recorded.  The total leaf area was estimated using the Image-J package. Data were tabulated in MS Excel and analyzed by Gen Stat. Treatments differed significantly in seedling height, shoot and root fresh weight, leaf area, root length, and shoot dry weight, while the number of leaves and dry matter percentage did not differ statistically. Maximum shoot fresh weight (1.09 g), shoot dry weight (0.11 g), leaf area (48.24 cm2), root length (4.89 cm), root fresh weight (0.03 g) per plant and shoot dry matter percentage (9.24%) were found in widest spacing (2 cm × 2 cm). However, seedling height was recorded higher in closer spacing. Therefore, the study of the overall characteristics asserted that the seed spaced at 2 cm × 2 cm produced superior seedling over all other spacings. Int. J. Appl. Sci. Biotechnol. Vol 8(1): 65-70


2011 ◽  
Vol 62 (11) ◽  
pp. 972 ◽  
Author(s):  
Qifu Ma ◽  
Richard Bell ◽  
Ross Brennan

In the agricultural lands of south-western Australia, salinity severely affects about 1 million hectares, and there is also widespread occurrence of potassium (K) deficiency. This study investigated whether the effects of sodium (Na) on crop K nutrition vary with plant salt sensitivity. In a glasshouse experiment with loamy sand, two barley cultivars (Hordeum vulgare L. cv. Gairdner, salt sensitive, and cv. CM72, salt tolerant) and one wheat cultivar (Triticum aestivum L. cv. Wyalkatchem, salt tolerant) were first grown in soil containing 30 mg extractable K/kg for 4 weeks to create mildly K-deficient plants, then subjected to Na (as NaCl) and additional K treatments for 3 weeks. Although high Na (300 mg Na/kg) reduced leaf numbers, moderate Na (100 mg Na/kg) hastened leaf development in barley cultivars but not in wheat. In the salt-tolerant CM72, moderate Na also increased tiller numbers, shoot dry weight and Na accumulation, but not root growth. The positive effect of moderate Na on shoot growth in CM72 was similar to that of adding 45 mg K/kg. Root growth relative to shoot growth was enhanced by adequate K supply (75 mg K/kg) compared with K deficiency, but not by Na supply. Soil Na greatly reduced the K/Na and Ca/Na ratios in shoots and roots, while additional K supply increased the K/Na ratio with little effect on the Ca/Na ratio. The study showed that the substitution of K by Na in barley and wheat was influenced not only by plant K status, but by the potential for Na uptake in roots and Na accumulation in shoots, which may play a major role in salt tolerance. The increased growth in shoots but not roots of salt-tolerant CM72 in response to moderate Na and the greater adverse effect of soil K deficiency on roots than shoots in all genotypes would make the low-K plants more vulnerable to saline and water-limited environments.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 689d-689
Author(s):  
P.R. Knight ◽  
J.R. Harris ◽  
J.K. Fanelli

Two-year-old, bareroot, Corylus colurna seedlings were grown in 7.5-L containers from 15 Mar. to 23 June 1995. Plants were grown in a glasshouse using pine bark media. Temperatures were maintained at 30/20°C. Plants received no fertilization or Osmocote 18–6–12 top-dressed at 14 or 28 g/container. Additionally, plants were pruned to remove 0%, 25%, or 50% of the root system based on root length. Height, diameter, branch number, leaf area, and root and shoot dry weight increased linearly as rate of fertilization increased. Percent embolism was not influenced by rate of fertilization. Plant height, branch number, leaf area, and root and shoot dry weight were not influenced by rate of root pruning. Plant diameter increased linearly as rate of root pruning decreased. Percent embolism increased linearly as rate of root pruning increased.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 632f-633
Author(s):  
Kay Oakley ◽  
Robert Geneve ◽  
Sharon Kester ◽  
Myra Stafford

Root and shoot development in Marigold `Little Devil Flame' was studied after being grown for varying lengths of time in 392-count plugs before transplanting to six-pack cells. Seedlings were grown for 0, 5, 10, 15, 20, and 25 days before transplanting to six-packs. All plants were measured at day 25. There was no significant difference in total root length, area and dry weight per plant or in leaf area and shoot dry weight per plant for seedlings transplanted from 0 to 15 days. Both total root dry weight and total shoot dry weight of seedlings transplanted on day 20 was reduced by 32% compared to seedlings that were not transplanted. Total root dry weight of seedlings transplanted at day 25 was reduced by 60% while total shoot dry weight of seedlings was reduced by 56% from those not transplanted. In a separate experiment, the growth rate of seedlings grown in plugs was sigmoidal (r2 = 0.98). Growth rate was significantly reduced between 20 and 25 days in the plug. These results suggest that root restriction in the plug may be a factor in the reduction of seedling growth following transplanting.


2002 ◽  
Vol 50 (2) ◽  
pp. 155 ◽  
Author(s):  
S. R. Barrett ◽  
B. L. Shearer ◽  
G. E. St J. Hardy

The effects of low-volume foliar application (24, 48, 96 kg ha–1) of phosphite on root and shoot development in Corymbia calophylla Lindley and Banksia brownii ex R.Br. were investigated in a glasshouse study. Shoot growth, root and shoot dry weight and root length were not significantly reduced by phosphite application in C. calophylla 2 weeks and 4 months after phosphite application. Shoot growth, shoot dry weight and root length were not significantly reduced in the non-mycorrhizal B. brownii. However, in plants treated with 24 and 96 kg ha–1, root dry weight was significantly reduced 4 months but not 2 weeks after spray. A discoloration of the root stele was also observed in phosphite-treated plants of this species. At 2 weeks after spray, root concentrations of phosphite in C. calophylla were up to five times higher than shoot concentrations. At 4 months after application, growth abnormalities were observed in B. brownii and these included spindly new shoot growth with rosetted foliage of reduced leaf size. The results of this study, which assessed one mycorrhizal and one non-mycorrhizal native species, suggest that species may vary in their response to phosphite in terms of root development and phosphite applied at rates of 24 kg ha–1 or higher may result in reduced root growth, particularly in non-mycorrhizal species. Further studies on root development in a wider range of species are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document