scholarly journals IntroMap: A Pipeline and Set of Diagnostic Diploid Arachis SNPs as a Tool for Mapping Alien Introgressions in Arachis hypogaea

2017 ◽  
Vol 44 (2) ◽  
pp. 66-73 ◽  
Author(s):  
J. Clevenger ◽  
D.J. Bertioli ◽  
S.C.M. Leal-Bertioli ◽  
Y. Chu ◽  
H.T. Stalker ◽  
...  

ABSTRACT For crops with a narrow cultivated genetic base, incorporating beneficial alleles from related species through alien introgression widens the genetic base and provides key resistances to disease and abiotic stresses. Fine mapping of these introgressions can increase the efficiency of marker-assisted selection for breeding programs. To facilitate high resolution fine mapping of alien introgressions, we developed an automated pipeline, IntroMap. This pipeline was developed with accessibility and utility in mind, and does not present novel mapping algorithms. Using five diploid wild Arachis species, we identified diagnostic SNP sets for introgression mapping in Arachis hypogaea, cultivated peanut. IntroMap has applicability in all crops where alien introgression is used to bring in beneficial alleles from related species, so the pipeline includes an option to generate new diagnostic SNPs from any species/accession of interest for use in the pipeline. These user generated resources will be included for distribution with IntroMap to increase the SNP resources for all users. We demonstrate the efficacy of IntroMap by fine mapping three alien introgressions in an elite peanut breeding line with superior disease resistance. IntroMap works well even at low coverage, recovering at 2x coverage almost 50% of the diagnostic SNPs found at 10x coverage. The true benefit of IntroMap is the availability and generation of shared public resources, specifically for Arachis spp. IntroMap is freely distributed at https://sourceforge.net/projects/intromap/.

2021 ◽  
Vol 13 (5) ◽  
pp. 2658
Author(s):  
Rose Nankya ◽  
John W. Mulumba ◽  
Hannington Lwandasa ◽  
Moses Matovu ◽  
Brian Isabirye ◽  
...  

The cultivated peanut (Arachis hypogaea L.) is one of the most widely consumed legumes globally due to its nutrient content, taste, and affordability. Nutrient composition and consumer preference were determined for twenty local farmer (landrace) and commercial peanut varieties grown in the Nakaseke and Nakasongola districts of the central wooded savanna of Uganda through sensory and laboratory evaluation. Significant differences in nutrient content (p < 0.05) among peanut varieties were found within and across sites. A significant relationship between nutrient content and consumer preference for varieties within and across sites was also realized (Wilk’s lambda = 0.05, p = 0.00). The differences in nutrient content influenced key organoleptic characteristics, including taste, crunchiness, appearance, and soup aroma, which contributed to why consumers may prefer certain varieties to others. Gender differences in variety selection were significantly related to consumer preference for the crunchiness of roasted peanut varieties (F = 5.7, p = 0.016). The results imply that selecting different varieties of peanuts enables consumers to receive different nutrient amounts, while experiencing variety uniqueness. The promotion of peanut intraspecific diversity is crucial for improved nutrition, organoleptic appreciation and the livelihood of those engaged in peanut value chains, especially for the actors who specialize in different peanut products. The conservation of peanut diversity will ensure that the present and future generations benefit from the nutritional content and organoleptic enjoyment that is linked to unique peanut varieties.


1985 ◽  
Vol 40 (5-6) ◽  
pp. 313-316 ◽  
Author(s):  
R. N. Strange ◽  
J. L. Ingham ◽  
D. L. Cole ◽  
M. E. Cavill ◽  
C. Edwards ◽  
...  

Abstract A phytoalexin produced by the leaflets of seven cultivars of Arachis hypogaea (groundnut) after natural infection by Cercospora arachidicola or Phoma arachidicola has been characterised as the isoflavonoid (+)-medicarpin (3-hydroxy-9-methoxypterocarpan). Treatment of excised ground­nut leaflets with an aqueous solution of CuSO4 or with a spore suspension of the fungus Helmin-thosporium carbonum has also been found to stimulate medicarpin biosynthesis.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Hao Zhang ◽  
Xiaobo Zhao ◽  
Quanxi Sun ◽  
Caixia Yan ◽  
Juan Wang ◽  
...  

Abiotic stresses comprise all nonliving factors, such as soil salinity, drought, extreme temperatures, and metal toxicity, posing a serious threat to agriculture and affecting the plant production around the world. Peanut (Arachis hypogaea L.) is one of the most important crops for vegetable oil, proteins, minerals, and vitamins in the world. Therefore, it is of importance to understand the molecular mechanism of peanut against salt stress. Six transcriptome sequencing libraries including 24-hour salt treatments and control samples were constructed from the young leaves of peanut. A comprehensive analysis between two groups detected 3,425 differentially expressed genes (DEGs) including 2,013 upregulated genes and 1,412 downregulated genes. Of these DEGs, 141 transcription factors (TFs) mainly consisting of MYB, AP2/ERF, WRKY, bHLH, and HSF were identified in response to salinity stress. Further, GO categories of the DEGs highly related to regulation of cell growth, cell periphery, sustained external encapsulating structure, cell wall organization or biogenesis, antioxidant activity, and peroxidase activity were significantly enriched for upregulated DEGs. The function of downregulated DEGs was mainly enriched in regulation of metabolic processes, oxidoreductase activity, and catalytic activity. Fourteen DEGs with response to salt tolerance were validated by real-time PCR. Taken together, the identification of DEGs’ response to salt tolerance of cultivated peanut will provide a solid foundation for improving salt-tolerant peanut genetic manipulation in the future.


2018 ◽  
Vol 09 (08) ◽  
pp. 1646-1659
Author(s):  
James Maku ◽  
Liping Wang ◽  
Fengxia Liu ◽  
Lixia Liu ◽  
Karen Kelley ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0175940 ◽  
Author(s):  
Ailton Ferreira de Paula ◽  
Naiana Barbosa Dinato ◽  
Bianca Baccili Zanotto Vigna ◽  
Alessandra Pereira Fávero

2011 ◽  
Vol 124 (4) ◽  
pp. 653-664 ◽  
Author(s):  
Hongde Qin ◽  
Suping Feng ◽  
Charles Chen ◽  
Yufang Guo ◽  
Steven Knapp ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Yanbin Hong ◽  
Xiaoping Chen ◽  
Xuanqiang Liang ◽  
Haiyan Liu ◽  
Guiyuan Zhou ◽  
...  

1997 ◽  
Vol 24 (1) ◽  
pp. 60-62 ◽  
Author(s):  
W. D. Branch

Abstract A better understanding of peanut (Arachis hypogaea L.) testa color genetics would be helpful to breeders in developing new cultivars to meet U.S. market acceptability. Wine is one of the least understood of all basic testa colors in peanut. The objective of this genetic study was to gain further knowledge on the inheritance of wine testa color and possible allelic interactions. Crosses were made using two true-breeding wine testa color genotypes (Wine-Frr and PI 264549) as females with the tan testa and recessive red testa male parents Krinkle-Leaf and Makulu Red, respectively. F1, F2, and F3 data suggest no difference between the two wine testa color genotypes. Inheritance of wine testa color was found to be recessive with a one gene difference between wine and the tan testa color of Krinkle-Leaf, and with two gene differences between wine and the recessive red testa color of Makulu Red. Inheritance of wine seems to closely parallel that for recessive red testa color in the cultivated peanut.


Sign in / Sign up

Export Citation Format

Share Document