scholarly journals Comparative Transcriptome Analysis Reveals Molecular Defensive Mechanism of Arachis hypogaea in Response to Salt Stress

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Hao Zhang ◽  
Xiaobo Zhao ◽  
Quanxi Sun ◽  
Caixia Yan ◽  
Juan Wang ◽  
...  

Abiotic stresses comprise all nonliving factors, such as soil salinity, drought, extreme temperatures, and metal toxicity, posing a serious threat to agriculture and affecting the plant production around the world. Peanut (Arachis hypogaea L.) is one of the most important crops for vegetable oil, proteins, minerals, and vitamins in the world. Therefore, it is of importance to understand the molecular mechanism of peanut against salt stress. Six transcriptome sequencing libraries including 24-hour salt treatments and control samples were constructed from the young leaves of peanut. A comprehensive analysis between two groups detected 3,425 differentially expressed genes (DEGs) including 2,013 upregulated genes and 1,412 downregulated genes. Of these DEGs, 141 transcription factors (TFs) mainly consisting of MYB, AP2/ERF, WRKY, bHLH, and HSF were identified in response to salinity stress. Further, GO categories of the DEGs highly related to regulation of cell growth, cell periphery, sustained external encapsulating structure, cell wall organization or biogenesis, antioxidant activity, and peroxidase activity were significantly enriched for upregulated DEGs. The function of downregulated DEGs was mainly enriched in regulation of metabolic processes, oxidoreductase activity, and catalytic activity. Fourteen DEGs with response to salt tolerance were validated by real-time PCR. Taken together, the identification of DEGs’ response to salt tolerance of cultivated peanut will provide a solid foundation for improving salt-tolerant peanut genetic manipulation in the future.

2020 ◽  
Author(s):  
Qian Ma ◽  
Huajian Zhou ◽  
Xinying Sui ◽  
Chunxue Su ◽  
Yanchong Yu ◽  
...  

Abstract Background: Wheat (Triticum aestivum L.) is a staple crop in the world, but is only moderately salt tolerant. However, salt stress affects one-fifth of irrigated agricultural land in the world, it is of great importance to cultivate salt-tolerant varieties to improve the global wheat production. Results: In this study, over 90,000 wheat seeds of cultivar ‘Luyuan502’ were mutated by EMS, and 2000 salt-tolerant lines were harvested from salinized field. By analysis of ethylene sensitivity, salt related physiological factors, and preliminary crop yield, 12 salt-tolerant wheat lines with high production were selected among the crop plants. Transcriptome analysis indicated that a large number of the transcripts levels were significantly altered, mainly based on antenna proteins involved in photosynthesis, biosynthesis of secondary metabolites, cyanoamino acid metabolism, carotenoid biosynthesis, thiamine metabolism, and cutin, suberine and wax biosynthesis pathways including CABs, PERs/PODs, BGLUs, CYP707s, and ZEPs. qRT-PCR analysis revealed that the expressions of salt-related genes in the wheat lines were mostly higher than the wild type, and salt stress can significantly increase the expression levels of the ethylene-related genes in the wheat lines. Based on transcriptomic data, nine novel wheat ERFs were identified and analyzed, and it is suggested that they may play important roles in mediation of ethylene response and salt tolerance.Conclusion: Salt-tolerant wheat mutant lines with ethylene insensitivity were obtained from screen of a wheat EMS-mutagenized pool. Transcriptome data showed that the mutant plants exhibit significant alterations in the antenna proteins involved in various biological processes. Expression analysis suggests that ERFs may mediate ethylene response and salt tolerance of the wheat lines.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 821
Author(s):  
Junlin Zheng ◽  
Gilang B. F. Suhono ◽  
Yinghao Li ◽  
Maggie Ying Jiang ◽  
Yinglong Chen ◽  
...  

Soil salinity is a serious threat to agriculture worldwide. Castor bean (Ricinus communis L.) is an in-demand oilseed crop containing 40–60% highly valued oil in its seeds. It is moderately sensitive to salinity. Two glasshouse experiments were conducted to assess plant growth and ion tissue distribution in different castor bean genotypes under various salt stress conditions to explore their potential for cultivation on saline land. Experiment 1 evaluated the response of five castor bean genotypes to four salt treatments (0, 50, 100, or 150 mM NaCl) up to 91 days after sowing (DAS). Experiment 2 further evaluated two genotypes selected from Experiment 1 in 1 m deep PVC tubes exposed to 0, 100, or 200 mM NaCl treatment for 112 DAS (Experiment 2). Experiment 1 showed that salt addition (particularly 150 mM NaCl) reduced plant height, stem diameter, shoot and root dry weights, photosynthetic traits, and leaf K+/Na+ ratio while increasing the leaf Na+ concentration of castor bean plants. Two genotypes, Zibo (Chinese variety) and Freo (Australian wild type), were more salt-tolerant than the other tested genotypes. In Experiment 2, salt-stressed Zibo flowered earlier than the control, while flowering time of Freo was not influenced by salt stress. The 200 mM NaCl treatment reduced the total root length and increased the average root diameter of both Zibo and Freo compared to the control. In addition, the 200 mM NaCl treatment significantly decreased total leaf area, chlorophyll content, and shoot and root dry weight of both castor bean genotypes by 50%, 10.6%, 53.1%, and 59.4%, respectively, relative to the control. In contrast, the 100 mM NaCl treatment did not significantly affect these traits, indicating that both genotypes tolerated salt stress up to 100 mM NaCl. In general, Freo had greater salt tolerance than Zibo, due to its higher average root diameter, lower Na+ concentration, and higher K+/Na+ ratio in young leaves under salt conditions. In conclusion, genotype Freo is recommended for cultivation in saline soils and could be used to breed high-yielding and salt-tolerant castor bean genotypes.


Biologia ◽  
2015 ◽  
Vol 70 (10) ◽  
Author(s):  
Karima H. A. Salama ◽  
Mohamed Magdy Mansour ◽  
Habebah A. Al-Malawi

AbstractSalinity stress is one of the most serious environmental factors limiting plant growth and productivity in large areas around the world. Priming approach was adopted to study the effect of glycinebetaine (GB) on enhancing salt tolerance of sensitive wheat cultivar (Gomeza 7). The caryopsis were primed in different concentrations of GB (25, 50, 100 mM) for 24 h, and then treated with or without 150 mM NaCl added to 1/4-modified Hoagland solution (MHS). The NaCl treatment lasted 38 d under natural environmental conditions. Salt stress reduced all growth parameters measured: fresh mass, dry mass, relative growth rate, for the shoots and roots, and relative water content (RWC). Salt imposition increased the level of Na


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10024
Author(s):  
Liwen Zhang ◽  
Lin Chen ◽  
Feng Lu ◽  
Ziting Liu ◽  
Siqun Lan ◽  
...  

The common reed (Phragmites australis) is a dominant species in the coastal wetlands of the Chinese Yellow River Delta, where it tolerates a wide range of salinity. Recent environmental changes have led to the increase of soil salinity in this region, which has degraded much of the local vegetation. Clones of common reeds from the tidal marsh may have adapted to local high salinity habitat through selection on genes and metabolic pathways conferring salt tolerance. This study aims to reveal molecular mechanisms underlying salt tolerance in the tidal reed by comparing them to the salt-sensitive freshwater reed under salt stress. We employed comparative transcriptomics to reveal the differentially expressed genes (DEGs) between these two types of common reeds under different salinity conditions. The results showed that only three co-expressed genes were up-regulated and one co-expressed gene was down-regulated between the two reed types. On the other hand, 1,371 DEGs were exclusively up-regulated and 285 DEGs were exclusively down-regulated in the tidal reed compared to the control, while 115 DEGs were exclusively up-regulated and 118 DEGs were exclusively down-regulated in the freshwater reed compared to the control. From the pattern of enrichment of transcripts involved in salinity response, the tidal reed was more active and efficient in scavenging reactive oxygen species (ROS) than the freshwater reed, with the tidal reed showing significantly higher gene expression in oxidoreductase activity. Furthermore, when the reeds were exposed to salt stress, transcripts encoding glutathione metabolism were up-regulated in the tidal reed but not in the freshwater reed. DEGs related to encoding glutathione reductase (GR), glucose-6-phosphate 1-dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PD), glutathione S-transferase (GST) and L-ascorbate peroxidase (LAP) were revealed as especially highly differentially regulated and therefore represented candidate genes that could be cloned into plants to improve salt tolerance. Overall, more genes were up-regulated in the tidal reed than in the freshwater reed from the Yellow River Delta when under salt stress. The tidal reed efficiently resisted salt stress by up-regulating genes encoding for oxidoreductase activity and glutathione metabolism. We suggest that this type of common reed could be extremely useful in the ecological restoration of degraded, high salinity coastal wetlands in priority.


2019 ◽  
Vol 20 (22) ◽  
pp. 5782 ◽  
Author(s):  
Jianbo Li ◽  
Pei Sun ◽  
Yongxiu Xia ◽  
Guangshun Zheng ◽  
Jingshuang Sun ◽  
...  

The growth and production of poplars are usually affected by unfavorable environmental conditions such as soil salinization. Thus, enhancing salt tolerance of poplars will promote their better adaptation to environmental stresses and improve their biomass production. Stress-associated proteins (SAPs) are a novel class of A20/AN1 zinc finger proteins that have been shown to confer plants’ tolerance to multiple abiotic stresses. However, the precise functions of SAP genes in poplars are still largely unknown. Here, the expression profiles of Populus trichocarpa SAPs in response to salt stress revealed that PtSAP13 with two AN1 domains was up-regulated dramatically during salt treatment. The β-glucuronidase (GUS) staining showed that PtSAP13 was accumulated dominantly in leaf and root, and the GUS signal was increased under salt condition. The Arabidopsis transgenic plants overexpressing PtSAP13 exhibited higher seed germination and better growth than wild-type (WT) plants under salt stress, demonstrating that overexpression of PtSAP13 increased salt tolerance. Higher activities of antioxidant enzymes were found in PtSAP13-overexpressing plants than in WT plants under salt stress. Transcriptome analysis revealed that some stress-related genes, including Glutathione peroxidase 8, NADP-malic enzyme 2, Response to ABA and Salt 1, WRKYs, Glutathione S-Transferase, and MYBs, were induced by salt in transgenic plants. Moreover, the pathways of flavonoid biosynthesis and metabolic processes, regulation of response to stress, response to ethylene, dioxygenase activity, glucosyltransferase activity, monooxygenase activity, and oxidoreductase activity were specially enriched in transgenic plants under salt condition. Taken together, our results demonstrate that PtSAP13 enhances salt tolerance through up-regulating the expression of stress-related genes and mediating multiple biological pathways.


2020 ◽  
Vol 21 (6) ◽  
pp. 2131 ◽  
Author(s):  
Yang Xu ◽  
Dai Zhang ◽  
Liangxiang Dai ◽  
Hong Ding ◽  
Dunwei Ci ◽  
...  

Background: Exposure of seeds to high salinity can cause reduced germination and poor seedling establishment. Improving the salt tolerance of peanut (Arachis hypogaea L.) seeds during germination is an important breeding goal of the peanut industry. Bacterial communities in the spermosphere soils may be of special importance to seed germination under salt stress, whereas extant results in oilseed crop peanut are scarce. Methods: Here, bacterial communities colonizing peanut seeds with salt stress were characterized using 16S rRNA gene sequencing. Results: Peanut spermosphere was composed of four dominant genera: Bacillus, Massilia, Pseudarthrobacter, and Sphingomonas. Comparisons of bacterial community structure revealed that the beneficial bacteria (Bacillus), which can produce specific phosphatases to sequentially mineralize organic phosphorus into inorganic phosphorus, occurred in relatively higher abundance in salt-treated spermosphere soils. Further soil enzyme activity assays showed that phosphatase activity increased in salt-treated spermosphere soils, which may be associated with the shift of Bacillus. Conclusion: This study will form the foundation for future improvement of salt tolerance of peanuts at the seed germination stage via modification of the soil microbes.


2014 ◽  
Vol 37 (9) ◽  
pp. 839-850 ◽  
Author(s):  
Jia-Hui LU ◽  
Xin LÜ ◽  
Yong-Chao LIANG ◽  
Hai-Rong LIN

HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 296-300 ◽  
Author(s):  
M.R. Foolad ◽  
G.Y. Lin

Seed of 42 wild accessions (Plant Introductions) of Lycopersicon pimpinellifolium Jusl., 11 cultigens (cultivated accessions) of L. esculentum Mill., and three control genotypes [LA716 (a salt-tolerant wild accession of L. pennellii Corr.), PI 174263 (a salt-tolerant cultigen), and UCT5 (a salt-sensitive breeding line)] were evaluated for germination in either 0 mm (control) or 100 mm synthetic sea salt (SSS, Na+/Ca2+ molar ratio equal to 5). Germination time increased in response to salt-stress in all genotypes, however, genotypic variation was observed. One accession of L. pimpinellifolium, LA1578, germinated as rapidly as LA716, and both germinated more rapidly than any other genotype under salt-stress. Ten accessions of L. pimpinellifolium germinated more rapidly than PI 174263 and 35 accessions germinated more rapidly than UCT5 under salt-stress. The results indicate a strong genetic potential for salt tolerance during germination within L. pimpinellifolium. Across genotypes, germination under salt-stress was positively correlated (r = 0.62, P < 0.01) with germination in the control treatment. The stability of germination response at diverse salt-stress levels was determined by evaluating germination of a subset of wild, cultivated accessions and the three control genotypes at 75, 150, and 200 mm SSS. Seeds that germinated rapidly at 75 mm also germinated rapidly at 150 mm salt. A strong correlation (r = 0.90, P < 0.01) existed between the speed of germination at these two salt-stress levels. At 200 mm salt, most accessions (76%) did not reach 50% germination by 38 days, demonstrating limited genetic potential within Lycopersicon for salt tolerance during germination at this high salinity.


Sign in / Sign up

Export Citation Format

Share Document