scholarly journals SIMULATION MODELLING IN THE STRUCTURAL GRAVITY PROSPECTING

Author(s):  
S. H. Anikeyev ◽  
S. M. Bahriy ◽  
B. B. Hablovskiy

In accordance with the purpose of geophysical exploration, the gravity data interpretation is aimed at prospecting mineral resources which is based on the study of the geological cross-section structure. The task of quantitative interpretation, which uses methods of gravity modeling and gravity inversion, is the modelling of a gravity field (gravity modeling) and of a density structure of geological environments (gravity inversion). The article presents the definition and steps of the gravity data modelling technique. This technique is based on the construction of an informal sequence of equivalent solutions. The technological and geological features of methods for modelling the density structure of complex geological environments are given; among them geological content, consistency with a priori data and the subordination of modelling to geological hypotheses are important. The topicality and methods of simulation modelling are outlined. The purpose of simulation modelling is to study the properties of gravity inversion in the general formulation, as well as to evaluate the degree of detail and reliability of the methods and technologies of gravity modelling, which claim to be an effective solution to geological problems. The example of structural simulation testing of the methods of informal sequence of equivalent solutions and its computer technologies shows that a complex interpretation of seismic and gravity measurements data enables the creation of detailed density models of structural cross-sections. The ways of increasing the veracity of gravity data modelling of structural cross-sections have been studied. It is revealed that the best approximation of the regional background is an inclined plane which approximates the observed field of gravity according to characteristic pickets over the research areas that are better studied. The increase in the veracity of modeling can also be achieved by rebuilding the near side zones in the structural type models in an interactive process of solving structural gravity inversion problems. Substantive modeling depends primarily on the experience of the interpreter since computer technologies for gravity modeling and gravity inversion are merely an interpretation tool.

Formulation of the problem. A gravity method is aimed at prospecting and exploration of mineral resources which are based on the study of the geological section structure. The task of quantitative interpretation of the gravimetric materials, which uses methods for solving direct and inverse gravity problems, is the modelling of a gravity field (direct problem) and geological media’s density structure (inverse problem). The important features of methods for density structure modelling of complex geological media are geological content, consistency with a priori data and its subordination to geological hypotheses. It is proposed to analyze these properties by a imitation technique. The purpose of the article is to describe the imitation gravimetric modelling method, based on the construction of an informal sequence of equivalent solutions. The purpose of imitation modelling is to study the properties of gravity inversion in general formulation as well as to assess the degree of detail and reliability of the methodology and technologies of gravity modelling, which is claimed to be an effective solution to geological problems. Methods. Imitation modelling technology and methods of solving gravity direct and inverse problems for geodensity model of complex geological environment. Results. The examples of density and structural simulation testing of the informal sequence of equivalent solutions and its computer technologies show that complex interpretation of wells, seismic and gravity data enables to create detailed density models of geological medium. Studies have also been conducted of ways to increase the reliability of gravitational modelling. Scientific novelty and practical significance. It is revealed that the best approximation of the regional background is an inclined plane, which approximates the observed gravity field along characteristic pickets over the research areas that are better studied. Also, an increase in the reliability of modelling can be achieved by rebuilding near side zones in structural type models in an interactive process of solving structural inverse gravity problems. Substantive modelling depends primarily on the experience of the interpreter, since computer technologies for solving direct and inverse gravity problems are only an interpretation tool.


Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 398
Author(s):  
Federico Cella ◽  
Rosa Nappi ◽  
Valeria Paoletti ◽  
Giovanni Florio

Sediments infilling in intermontane basins in areas with high seismic activity can strongly affect ground-shaking phenomena at the surface. Estimates of thickness and density distribution within these basin infills are crucial for ground motion amplification analysis, especially where demographic growth in human settlements has implied increasing seismic risk. We employed a 3D gravity modeling technique (ITerative RESCaling—ITRESC) to investigate the Fucino Basin (Apennines, central Italy), a half-graben basin in which intense seismic activity has recently occurred. For the first time in this region, a 3D model of the Meso-Cenozoic carbonate basement morphology was retrieved through the inversion of gravity data. Taking advantage of the ITRESC technique, (1) we were able to (1) perform an integration of geophysical and geological data constraints and (2) determine a density contrast function through a data-driven process. Thus, we avoided assuming a priori information. Finally, we provided a model that honored the gravity anomalies field by integrating many different kinds of depth constraints. Our results confirmed evidence from previous studies concerning the overall shape of the basin; however, we also highlighted several local discrepancies, such as: (a) the position of several fault lines, (b) the position of the main depocenter, and (c) the isopach map. We also pointed out the existence of a new, unknown fault, and of new features concerning known faults. All of these elements provided useful contributions to the study of the tectono-sedimentary evolution of the basin, as well as key information for assessing the local site-response effects, in terms of seismic hazards.


2013 ◽  
Vol 56 (4) ◽  
Author(s):  
Paolo Capuano ◽  
Guido Russo ◽  
Roberto Scarpa

<p>A high-resolution image of the compressional wave velocity and density structure in the shallow edifice of Mount Vesuvius has been derived from simultaneous inversion of travel times and hypocentral parameters of local earthquakes and from gravity inversion. The robustness of the tomography solution has been improved by adding to the earthquake data a set of land based shots, used for constraining the travel time residuals. The results give a high resolution image of the P-wave velocity structure with details down to 300-500 m. The relocated local seismicity appears to extend down to 5 km depth below the central crater, distributed into two clusters, and separated by an anomalously high Vp region positioned at around 1 km depth. A zone with high Vp/Vs ratio in the upper layers is interpreted as produced by the presence of intense fluid circulation alternatively to the interpretation in terms of a small magma chamber inferred by petrologic studies. In this shallower zone the seismicity has the minimum energy, whilst most of the high-energy quakes (up to Magnitude 3.6) occur in the cluster located at greater depth. The seismicity appears to be located along almost vertical cracks, delimited by a high velocity body located along past intrusive body, corresponding to remnants of Mt. Somma. In this framework a gravity data inversion has been performed to study the shallower part of the volcano. Gravity data have been inverted using a method suitable for the application to scattered data in presence of relevant topography based on a discretization of the investigated medium performed by establishing an approximation of the topography by a triangular mesh. The tomography results, the retrieved density distribution, and the pattern of relocated seismicity exclude the presence of significant shallow magma reservoirs close to the central conduit. These should be located at depth higher than that of the base of the hypocenter volume, as evidenced by previous studies.</p>


2020 ◽  
Author(s):  
Mateusz Mikołajczak ◽  
Jan Barmuta ◽  
Małgorzata Ponikowska ◽  
Stanislaw Mazur ◽  
Krzysztof Starzec

&lt;p&gt;The Silesian Nappe in the westernmost part of the Polish Outer Carpathians Fold and Thrust Belt exhibits simple, almost homoclinal character. Based on the field observations, a total stratigraphic thickness of this sequence equals to at least 5400 m. On the other hand, the published maps of the sub-Carpathian basement show its top at depths no greater than 3000 m b.s.l. or even 2000 m b.s.l. in the southern part of the Silesian Nappe. Assuming no drastic thickness variations within the sedimentary sequence of the Silesian Nappe, such estimates of the basement depth are inconsistent with the known thickness of the Silesian sedimentary succession. The rationale behind our work was to resolve this inconsistency and verify the actual depth and structure of the sub-Carpathian crystalline basement along two regional cross-sections. In order to achieve this goal, a joint 2D quantitative interpretation of gravity and magnetic data was performed along these regional cross-sections. The interpretation was supported by the qualitative analysis of magnetic and gravity maps and their derivatives to recognize structural features in the sub-Carpathian basement. The study was concluded with the 3D residual gravity inversion for the top of basement. The cross-sections along with the borehole data available from the area were applied to calibrate the inversion.&lt;/p&gt;&lt;p&gt;In the westernmost part of the Polish Outer Carpathians, the sub-Carpathian basement comprises part of the Brunovistulian Terrane. Because of great depths, the basement structure was investigated mainly by geophysical, usually non-seismic, methods. However, some deep boreholes managed to penetrate the basement that is composed of Neoproterozoic metamorphic and igneous rocks. The study area is located within the Upper Silesian block along the border between Poland and Czechia. There is a basement uplift as known mainly from boreholes, but the boundaries and architecture of this uplift are poorly recognized. Farther to the south, the top of the Neoproterozoic is buried under a thick cover of lower Palaeozoic sediments and Carpathian nappes.&lt;/p&gt;&lt;p&gt;Our integrative study allowed to construct a three-dimensional map for the top of basement the depth of which increases from about 1000 m to over 7000 m b.s.l. in the north and south of the study area, respectively. Qualitative analysis of magnetic and gravity data revealed the presence of some &amp;#160;basement-rooted faults delimiting the extent of the uplifted basement. The interpreted faults are oriented mainly towards NW-SE and NE-SW. Potential field data also document the correlation between the main basement steps and important thrust faults.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This work has been funded by the Polish National Science Centre grant no UMO-2017/25/B/ST10/01348&lt;/p&gt;


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1438-1449 ◽  
Author(s):  
Seiichi Nagihara ◽  
Stuart A. Hall

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3‐D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2‐D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA‐based gravity inversion has some advantages over the approach based on damped least‐squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. G17-G34
Author(s):  
B. Marcela S. Bastos ◽  
Vanderlei C. Oliveira Jr.

We have developed a nonlinear gravity inversion for simultaneously estimating the basement and Moho geometries, as well as the depth of the reference Moho along a profile crossing a passive rifted margin. To obtain stable solutions, we impose smoothness on basement and Moho, force them to be close to previously estimated depths along the profile and also impose local isostatic equilibrium. Different from previous methods, we evaluate the information of local isostatic equilibrium by imposing smoothness on the lithostatic stress exerted at depth. Our method delimits regions that deviate and those that can be considered in local isostatic equilibrium by varying the weight of the isostatic constraint along the profile. It also allows controlling the degree of equilibrium along the profile, so that the interpreter can obtain a set of candidate models that fit the observed data and exhibit different degrees of isostatic equilibrium. Our method also differs from earlier studies because it attempts to use isostasy for exploring (but not necessarily reducing) the inherent ambiguity of gravity methods. Tests with synthetic data illustrate the effect of our isostatic constraint on the estimated basement and Moho reliefs, especially at regions with pronounced crustal thinning, which are typical of passive volcanic margins. Results obtained by inverting satellite data over the Pelotas Basin, a passive volcanic margin in southern Brazil, agree with previous interpretations obtained independently by combining gravity, magnetic, and seismic data available to the petroleum industry. These results indicate that combined with a priori information, simple isostatic assumptions can be very useful for interpreting gravity data on passive rifted margins.


2018 ◽  
Vol 36 (4) ◽  
pp. 1
Author(s):  
Nelson Ribeiro Filho ◽  
Cristiano Mendel Martins ◽  
Renata de Sena Santos

ABSTRACT. Gravity anomalies normally contain information of all sources beneath Earth’s surface. Once residual anomalies exhibit information about the main target, the knowledge of this specific residual signal is extremely important to interpretation. To find this signal, it’s necessary to perform regional-residual separation. We present here a new approach of separation by using gravity crustal modeling. We divide the surface in prisms, with density given by GEMMA. We calculate the regional signal, assuming Earth’s crust can be the source of observed anomaly. This methodology was applied on Barreirinhas basin-Brazil. Its formation is related to geologic events in South America-Africa break. Besides, the complex geology is the main obstacle on finding the residual anomaly. We compare our methodology with robust-polynomial fitting and spectral-analysis. They were not able to identify the residual anomaly. Main trouble relies on absence of crust information. Those kind of environment usually requires forward modeling and/or gravity inversion. On the other hand, our approach considers all crust’s parameters. Then the difficulty on choosing the residual no longer exists. The residual anomaly follows a geologic pattern. The crustal depocenter was mapped between structural faults. Therefore, our results satisfies the main expectation and are extremely linked to Barreirinhas basin’s geological background. We recommend this separation procedure, once Earth’s crustal model and gravity data are available for all planet.Keywords: Gravity modeling; GEMMA model; Barreirinhas basin; residual anomaly. RESUMO. Anomalias gravimétricas contêm informações de todas as fontes na superfície terrestre. Uma vez que anomalias residuais exibem informações sobre alvos principais, o conhecimento desse específico sinal residual é extremamente importante para interpretação. Para encontrá-lo, é necessário realizar separação regional-residual. Apresentamos aqui uma nova abordagem de separação utilizando a modelagem gravimétrica crustal. Discretizamos a superfície em prismas, com densidade fornecida pelo modelo GEMMA. Calculamos o sinal regional, assumindo que a crosta terrestre é a fonte da anomalia observada. Aplicamos esta metodologia na bacia de Barreirinhas - Brasil, que tem sua formação relacionada aos eventos geológicos de separação da América do Sul e África. Além disso, a complexidade geológica é considerada o principal obstáculo para encontrar esta anomalia residual. Comparamos nossa metodologia com Ajuste Polinomial Robusto e Análise Espectral. Essas técnicas não foram capazes de identificar a anomalia residual. O principal problema se dá pela ausência de informações acerca da crosta. Para esse ambiente, geralmente requer modelagem direta e/ou inversão geofísica. Por outro lado, nossa abordagem considera todos os parâmetros crustais e a dificuldade em escolher o residual deixa de existir. A anomalia residual apresenta um padrão geológico. O depocentro crustal foi mapeado entre falhas estruturais. Nossos resultados satisfazem a expectativa principal e estão extremamente ligados ao cenário geológico da bacia. Recomendamos este procedimento de separação, uma vez que os modelos crustais e dados gravimétricos estão disponíveis para todo o planeta.Palavras-chave: Modelagem gravimétrica; modelo GEMMA; bacia de Barreirinhas; anomalia residual


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. G25-G39 ◽  
Author(s):  
Meixia Geng ◽  
J. Kim Welford ◽  
Colin G. Farquharson ◽  
Xiangyun Hu

We have developed a new constrained inversion method that is based on a probabilistic approach for resolving crustal structure from regional gravity data. The smoothness of estimated structures is included in the inversion by using a model covariance matrix, and the sparse boundary information obtained from seismic data is incorporated in the inversion by using linear equality constraints. Moreover, constraints on the average anomalous densities expected for different crustal layers are applied instead of using a depth-weighting function. Bathymetric data and sediment thicknesses are included in the inversion by using an a priori model. Using the proposed method, model structures with sharp boundaries can be obtained while the existing boundary information and sparse seismic constraints are honored. We determine through a synthetic example and a real-world example that the proposed constrained inversion method is a valid tool for studying crustal-scale structures.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. G53-G66 ◽  
Author(s):  
Rodrigo Bijani ◽  
Cosme F. Ponte-Neto ◽  
Dionisio U. Carlos ◽  
Fernando J. S. Silva Dias

We developed a new strategy, based on graph theory concepts, to invert gravity data using an ensemble of simple point masses. Our method consisted of a genetic algorithm with elitism to generate a set of possible solutions. Each estimate was associated to a graph to solve the minimum spanning tree (MST) problem. To produce unique and stable estimates, we restricted the position of the point masses by minimizing the statistical variance of the distances of an MST jointly with the data-misfit function during the iterations of the genetic algorithm. Hence, the 3D spatial distribution of the point masses identified the skeleton of homogeneous gravity sources. In addition, our method also gave an estimation of the anomalous mass of the source. So, together with the anomalous mass, the skeleton could aid other 3D methods with promising geometric a priori parameters. Several tests with different values of regularizing parameter were made to bespeak this new regularizing strategy. The inversion results applied to noise-corrupted synthetic gravity data revealed that, regardless of promising starting models, the estimated distribution of point masses and the anomalous mass offered valuable information about the homogeneous sources in the subsurface. Tests on real data from a portion of Quadrilátero Ferrífero, Minas Gerais state, Brazil, were performed for complementary analysis of the proposed inversion method.


2020 ◽  
Author(s):  
Tatiana Shirokova ◽  
Ivan Lygin ◽  
Tatiana Sokolova

&lt;p&gt;Currently, the integration of seismic and &quot;non-seismic&quot; geophysical research methods is increasingly demanded by the practice of exploration. Further improvement of the efficiency of the complex of seismometry and gravimetry, its wide introduction into practice, requires both the creation of recommendations on the methodology of joint interpretation of these methods, and the determination of limitations on the scale of surveying and the specifics of the considered cross-sections, affecting the effectiveness of the methods of the studied geological structures. The aim of the presented work is to identify the main factors that determine the limits of applicability of seismic-gravity modeling.&lt;/p&gt;&lt;p&gt;The possibilities of seismic-gravity modeling in conditions of different physical and geological structure of the considered environment, scale, level and quality of the initial data were investigated on real objects. It is shown that it is impossible to totally formalize a single approach (algorithmize) to the creation of a seismic-gravity model. The modeling technique inevitably changes, adapts to the physical and geological situation and the completeness and detail of a priori information. Against the background of numerous positive examples of use, the situations difficult for seismic-gravity modeling are given and analyzed carefully and the reasons for the low efficiency of the method are revealed.&lt;/p&gt;&lt;p&gt;The experience of practical research has shown that the effectiveness of seismic-gravity modeling is primarily influence by such features of geological structure as the extent of compartmentalization of the reflector horizons&amp;#8217; geometry, contrast and depth of the density boundaries, the accordance of seismic and gravity exploration (both field survey and target exploration intervals), the intricacy of the geological history of the region.&lt;/p&gt;&lt;p&gt;The findings are important at the design stage of field work to compile a set of geophysical methods, the most effective for this area of study.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document