INVESTIGATION OF PARAMETERS OF HYDROMONITOR JET OF A BIT

Author(s):  
V. M. Moisyshyn ◽  
Ya. S. Biletsky ◽  
M. V. Seniushkovych ◽  
I. I. Vytvytsky

The movement of drilling mud through hydromonitor nozzles is investigated in the work. On the basis of the theory of destruction of rocks by a liquid stream the necessary values of pressure on hydromonitor nozzles of a drilling head for concrete values of mechanical properties of the drilled breed are found. The results of the performed analytical researches were used for modeling of processes of movement of a stream of washing liquid through hydromonitor nozzles of a bit with use of the Flow Simulation CAD / CAM package of the Solid Works system. During the simulation following parameters were investigated: the location of the nozzles at different distances from the axis of the bit and from the bottom of the well, pressure distribution at the bottom of the well at the exit of the flushing fluid from each nozzle and the velocity of the jet and the wall of the well, the vorticity of the jets on the bottom and the walls of the well. According to the results of research design of the hydromonitor unit of the drilling head was improved and new tests were carried out in industrial conditions.

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1745
Author(s):  
Tamaki Hada ◽  
Manabu Kanazawa ◽  
Maiko Iwaki ◽  
Awutsadaporn Katheng ◽  
Shunsuke Minakuchi

In this study, the physical properties of a custom block manufactured using a self-polymerizing resin (Custom-block), the commercially available CAD/CAM PMMA disk (PMMA-disk), and a heat-polymerizing resin (Conventional PMMA) were evaluated via three different tests. The Custom-block was polymerized by pouring the self-polymerizing resin into a special tray, and Conventional PMMA was polymerized with a heat-curing method, according to the manufacturer’s recommended procedure. The specimens of each group were subjected to three-point bending, water sorption and solubility, and staining tests. The results showed that the materials met the requirements of the ISO standards in all tests, except for the staining tests. The highest flexural strength was exhibited by the PMMA-disk, followed by the Custom-block and the Conventional PMMA, and a significant difference was observed in the flexural strengths of all the materials (p < 0.001). The Custom-block showed a significantly higher flexural modulus and water solubility. The water sorption and discoloration of the Custom-block were significantly higher than those of the PMMA-disk, but not significantly different from those of the Conventional PMMA. In conclusion, the mechanical properties of the three materials differed depending on the manufacturing method, which considerably affected their flexural strength, flexural modulus, water sorption and solubility, and discoloration.


2021 ◽  
Vol 23 (11) ◽  
pp. 693-703
Author(s):  
Tesfaye Barza ◽  
◽  
G. Lakshmikanth ◽  

This paper is concerned the flow simulation and performance analysis of the Centrifugal Compressor Using CFD – Tool. The complex internal flow of centrifugal compressor can be well analyzed, and the unique design system needs to be developed. It should be early to use the interface and also flexible for input and output. A 3-D flow simulation of turbulent – fluid flow is presented to visualize the flow pattern in-terms of velocity, streamline and pressure distribution on the blade surface are graphically interpreted. The standard K- e turbulence model and the simple model algorithm were chosen for turbulence model and pressure distribution well determined. The simulation was steady Heat transfer and moving reference frame was used to consider the impeller interaction under high resolution. Furthermore, A computational Fluid Dynamics (CFD) 3-D simulation is done to analyze the impeller head and efficiency required of centrifugal compressor. The impeller is rotated for a constant revolution and mass flow rate, in this study initially the geometry of centrifugal compressor impeller is created by an ANSYS Vista CCD, and the Blade modeller done by Bladegen, Finally, CFD analysis was performed in ANSYS CFX using the ANSYS Turbo grid meshing tool. According to the analysis, as the number of impeller blades increases, so does the value of the head and power imparted, as well as the impeller’s efficiency.


Teknik ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 9-13
Author(s):  
Akhmad Nurdin ◽  
Dwi Aries Himawanto ◽  
Syamsul Hadi

This paper discusses numerical simulations of horizontal flow propeller turbines. Static bulbs located before the turbine can be used to increase water velocity and potentially increase the turbine's performance. The blade angle affects the gap between the blades, and this will also affect the performance of the turbine. Numerical simulations were conducted by using software Solid Works Flow Simulation 2016 and by using five blades in a static state. This study aimed to determine the effect of the bulb ratio and blade angle on the propeller turbine characteristics on horizontal flow. Bulb Ratio variations used in this study were 0, 0.4, 0.6, and 0.8, while the angle variations used were 20, 25, and 30 degrees. Each variation was tested at 0.02 m3/second. The results of this study indicated that the bulb ratio 0.6 with the 25-degree blade angle produces the highest torque


2013 ◽  
Vol 320 ◽  
pp. 505-511
Author(s):  
Ning Li ◽  
Zhi Kai Wu ◽  
Chao Jian ◽  
Wan Qian Zhao ◽  
Jia Zhen Yan

During the 20th century, both dental materials and dental technologies for the fabrication of dental prosthesis progressed remarkably. Owing to the increased demand of safety and aesthetics, 3 mol% yttria stabilized tetragonal zirconia polycrystalline has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM technique. This greatly changed the conventional dental laboratory work which is labor-intensive and experience-dependent. This review mainly introduced the state of dental zirconia and the application of CAD/CAM technology in dentistry. Key words: Dental Zirconia; CAD/CAM Technique; Mechanical Properties; Transformation Toughing; Low Temperature Aging;


Materials ◽  
2016 ◽  
Vol 9 (7) ◽  
pp. 596 ◽  
Author(s):  
Hae Kim ◽  
Seong-Ho Jang ◽  
Young Kim ◽  
Jun Son ◽  
Bong Min ◽  
...  

Author(s):  
Zbigniew M. Bzymek ◽  
Alicia Benjamin

This paper describes the process of integrating engineering design, manufacturing, and production in the area of manufacturing automation. The work was done within the scope of a Mechanical Engineering senior course that’s objective was to introduce students to the processes of advanced manufacturing and to solving practical engineering problems in manufacturing automation. The students’ efforts at integration covered automation of conceptual and geometric designs, automation of machining process, and machine sequence optimization. The CAD/CAM software, CAMM3 Micromodeler, G-code, NX8, Solid Works, DELMIA/QUEST, and Mastercam were used successfully in a sequence. A survey of the students’ opinions about the effectiveness and user friendliness of the software was summarized at the end of the semester. The elements of the course were integrated in the Final Project. Full automation of integrated design and manufacturing data exchange were found to be too difficult to accomplish. However, the use of the automation software in a sequence, together with data export and import, marks a significant step forward towards integrated manufacturing automation. The research to accomplish this will continue and the results will be applied in order to reinforce the teaching and practice of Manufacturing Automation.


Sign in / Sign up

Export Citation Format

Share Document