scholarly journals The inclusion of additional topics to the program of linear algebra course for economists and managers

2019 ◽  
pp. 21-25
Author(s):  
Sergej Yurevich Shashkin

The paper generalizes the concept of “solving a system of linear algebraic equations in order to formulate a unified approach to the analysis of incompatible, indefinite and unstable systems”. Examples of unstable systems of linear algebraic equations are considered, which solutions depend on small changes in the numerical coefficients in the equations. The reasons for the instability of linear systems and the regularization algorithm for finding the solution of any system of linear algebraic equations are discussed. As the author notes, the Tikhonov regulatory algorithm is the most popular and practically convenient for solving unstable SLAES.

1972 ◽  
Vol 39 (2) ◽  
pp. 559-562 ◽  
Author(s):  
I-Min Yang ◽  
W. D. Iwan

This paper presents an approach which provides a particularly simple and direct way of determining the instantaneous correlation matrices for the stationary random response of multidegree-of-freedom linear systems subjected to excitations of nearly arbitrary spectral density. In the special case of white excitation, the instantaneous correlation matrices are determined directly from a set of linear algebraic equations. When the excitation is nonwhite, some integrals must be evaluated before solving a system of linear algebraic equations. However, the form of these integrals is considerably simpler than that encountered in other common approaches.


Author(s):  
Alexander Khimich ◽  
Victor Polyanko ◽  
Tamara Chistyakova

Introduction. At present, in science and technology, new computational problems constantly arise with large volumes of data, the solution of which requires the use of powerful supercomputers. Most of these problems come down to solving systems of linear algebraic equations (SLAE). The main problem of solving problems on a computer is to obtain reliable solutions with minimal computing resources. However, the problem that is solved on a computer always contains approximate data regarding the original task (due to errors in the initial data, errors when entering numerical data into the computer, etc.). Thus, the mathematical properties of a computer problem can differ significantly from the properties of the original problem. It is necessary to solve problems taking into account approximate data and analyze computer results. Despite the significant results of research in the field of linear algebra, work in the direction of overcoming the existing problems of computer solving problems with approximate data is further aggravated by the use of contemporary supercomputers, do not lose their significance and require further development. Today, the most high-performance supercomputers are parallel ones with graphic processors. The architectural and technological features of these computers make it possible to significantly increase the efficiency of solving problems of large volumes at relatively low energy costs. The purpose of the article is to develop new parallel algorithms for solving systems of linear algebraic equations with approximate data on supercomputers with graphic processors that implement the automatic adjustment of the algorithms to the effective computer architecture and the mathematical properties of the problem, identified in the computer, as well with estimates of the reliability of the results. Results. A methodology for creating parallel algorithms for supercomputers with graphic processors that implement the study of the mathematical properties of linear systems with approximate data and the algorithms with the analysis of the reliability of the results are described. The results of computational experiments on the SKIT-4 supercomputer are presented. Conclusions. Parallel algorithms have been created for investigating and solving linear systems with approximate data on supercomputers with graphic processors. Numerical experiments with the new algorithms showed a significant acceleration of calculations with a guarantee of the reliability of the results. Keywords: systems of linear algebraic equations, hybrid algorithm, approximate data, reliability of the results, GPU computers.


1980 ◽  
Vol 35 (10) ◽  
pp. 1054-1061 ◽  
Author(s):  
Friedrich Franz Seelig

Abstract Periodic structures in chemical kinetic systems can be evaluated by an extension of the well-known method of harmonic balance, which yields very simple expressions in the case of linear systems containing only zero and first order reactions. The far more interesting non-linear systems containing e.g. second order reactions which in case of open systems far from thermodynamic equilibrium give rise to non-classical phenomena like oscillations, chemical waves, excitability, hysteresis, multistability, dissipative structures etc. can be treated in a similar way by introducing new pseudo-linear quantities utilizing certain group properties of harmonic expansions. The resulting complicated implicit non-linear algebraic equations are solved by a method developed by Powell and show good convergence. Since this method - in contrast to the conventional method of simulation - is independent from the stability of the periodic structure to be evaluated it can even be applied to unstable cases where the simulation method necessarily fails. An evaluation of the stability is included in the developed computer program.


1958 ◽  
Vol 62 (570) ◽  
pp. 451-455
Author(s):  
Josef Schmidtmayer

Two methods are given concerning the following problems of linear algebra over the field of complex numbers (or, less rigorously, linear problems with complex coefficients): the solving of a system of linear algebraic equations, the inversion of a matrix and the evaluation of a determinant. The second method is especially suitable for use with computers. In addition to the usual numerical checking, the second method also provides an effective form check.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Qinghua Wu ◽  
Liang Bao ◽  
Yiqin Lin

We propose in this paper a residual-based simpler block GMRES method for solving a system of linear algebraic equations with multiple right-hand sides. We show that this method is mathematically equivalent to the block GMRES method and thus equivalent to the simpler block GMRES method. Moreover, it is shown that the residual-based method is numerically more stable than the simpler block GMRES method. Based on the deflation strategy proposed by Calandra et al. (2013), we derive a deflation strategy to detect the possible linear dependence of the residuals and a near rank deficiency occurring in the block Arnoldi procedure. Numerical experiments are conducted to illustrate the performance of the new method.


2020 ◽  
Vol 44 (1) ◽  
pp. 133-136
Author(s):  
A.I. Zhdanov ◽  
Y.V. Sidorov

The article presents a novel algorithm for calculating generalized normal solutions of underdetermined systems of linear algebraic equations based on special extended systems. The advantage of this method is the ability to solve very poorly conditioned (possibly sparse) underdetermined linear systems of large dimension using modern versions of the iterative refinement method based on the generalized minimum residual method (GMRES - IT). Results of applying the considered algorithm to solve the problem of balancing chemical equations (mass balance) are presented.


2006 ◽  
Vol 6 (3) ◽  
pp. 264-268
Author(s):  
G. Berikelashvili ◽  
G. Karkarashvili

AbstractA method of approximate solution of the linear one-dimensional Fredholm integral equation of the second kind is constructed. With the help of the Steklov averaging operator the integral equation is approximated by a system of linear algebraic equations. On the basis of the approximation used an increased order convergence solution has been obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrey A. Pil’nik ◽  
Andrey A. Chernov ◽  
Damir R. Islamov

AbstractIn this study, we developed a discrete theory of the charge transport in thin dielectric films by trapped electrons or holes, that is applicable both for the case of countable and a large number of traps. It was shown that Shockley–Read–Hall-like transport equations, which describe the 1D transport through dielectric layers, might incorrectly describe the charge flow through ultra-thin layers with a countable number of traps, taking into account the injection from and extraction to electrodes (contacts). A comparison with other theoretical models shows a good agreement. The developed model can be applied to one-, two- and three-dimensional systems. The model, formulated in a system of linear algebraic equations, can be implemented in the computational code using different optimized libraries. We demonstrated that analytical solutions can be found for stationary cases for any trap distribution and for the dynamics of system evolution for special cases. These solutions can be used to test the code and for studying the charge transport properties of thin dielectric films.


Sign in / Sign up

Export Citation Format

Share Document