Clinical Application of Liquid Biopsy for Precise Diagnosis and Prognosis in Lymphoma

Author(s):  
2020 ◽  
Vol 26 (42) ◽  
pp. 7655-7671 ◽  
Author(s):  
Jinfeng Zou ◽  
Edwin Wang

Background: Precision medicine puts forward customized healthcare for cancer patients. An important way to accomplish this task is to stratify patients into those who may respond to a treatment and those who may not. For this purpose, diagnostic and prognostic biomarkers have been pursued. Objective: This review focuses on novel approaches and concepts of exploring biomarker discovery under the circumstances that technologies are developed, and data are accumulated for precision medicine. Results: The traditional mechanism-driven functional biomarkers have the advantage of actionable insights, while data-driven computational biomarkers can fulfill more needs, especially with tremendous data on the molecules of different layers (e.g. genetic mutation, mRNA, protein etc.) which are accumulated based on a plenty of technologies. Besides, the technology-driven liquid biopsy biomarker is very promising to improve patients’ survival. The developments of biomarker discovery on these aspects are promoting the understanding of cancer, helping the stratification of patients and improving patients’ survival. Conclusion: Current developments on mechanisms-, data- and technology-driven biomarker discovery are achieving the aim of precision medicine and promoting the clinical application of biomarkers. Meanwhile, the complexity of cancer requires more effective biomarkers, which could be accomplished by a comprehensive integration of multiple types of biomarkers together with a deep understanding of cancer.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1989
Author(s):  
Laura Escudero ◽  
Francisco Martínez-Ricarte ◽  
Joan Seoane

The correct characterisation of central nervous system (CNS) malignancies is crucial for accurate diagnosis and prognosis and also the identification of actionable genomic alterations that can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour; however, these procedures are invasive and are not always feasible for all patients. Moreover, they only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore, analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review, we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the challenges that need to be overcome in order to translate research findings into a tool for clinical practice.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3373
Author(s):  
Milena Matuszczak ◽  
Jack A. Schalken ◽  
Maciej Salagierski

Prostate cancer (PCa) is the most common cancer in men worldwide. The current gold standard for diagnosing PCa relies on a transrectal ultrasound-guided systematic core needle biopsy indicated after detection changes in a digital rectal examination (DRE) and elevated prostate-specific antigen (PSA) level in the blood serum. PSA is a marker produced by prostate cells, not just cancer cells. Therefore, an elevated PSA level may be associated with other symptoms such as benign prostatic hyperplasia or inflammation of the prostate gland. Due to this marker’s low specificity, a common problem is overdiagnosis, which leads to unnecessary biopsies and overtreatment. This is associated with various treatment complications (such as bleeding or infection) and generates unnecessary costs. Therefore, there is no doubt that the improvement of the current procedure by applying effective, sensitive and specific markers is an urgent need. Several non-invasive, cost-effective, high-accuracy liquid biopsy diagnostic biomarkers such as Progensa PCA3, MyProstateScore ExoDx, SelectMDx, PHI, 4K, Stockholm3 and ConfirmMDx have been developed in recent years. This article compares current knowledge about them and their potential application in clinical practice.


Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


2021 ◽  
Vol 11 (4) ◽  
pp. 858-873
Author(s):  
Catherine Alix-Panabières ◽  
Klaus Pantel

Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 192
Author(s):  
Leonie Konczalla ◽  
Anna Wöstemeier ◽  
Marius Kemper ◽  
Karl-Frederik Karstens ◽  
Jakob Izbicki ◽  
...  

The idea of a liquid biopsy to screen, surveil and treat cancer patients is an intensively discussed and highly awaited tool in the field of oncology. Despite intensive research in this field, the clinical application has not been implemented yet and further research has to be conducted. However, one component of the liquid biopsy is circulating tumor cells (CTCs) whose potential for clinical application is evaluated in the following. CTCs can shed from primary tumors to the peripheral blood at any time point during the progress of a malignant disease. Following, one single CTC can be the origin for distant metastasis at later cancer stage. Thus, CTCs have great potential to either be used in cancer diagnostics and patient stratification or to function as a target for new therapeutic approaches to stop tumor dissemination and metastasis at the very early beginning. Due to the biological fundamental role of CTCs in tumor progression, here, we provide an overview of CTCs in gastrointestinal cancers and their potential use in the clinical setting. In particular, we discuss the usage of CTC for screening and stratifying patients’ risk. Moreover, we will discuss the potential role of CTCs for treatment specification and treatment monitoring.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kaifeng Zhao ◽  
Yaoping Liu ◽  
Hua Wang ◽  
Yanling Song ◽  
Xiao-Feng Chen ◽  
...  

Rapid, efficient, and selective separation of tumor cells from complex body fluids is urgently needed for clinical application of tumor-cell-based liquid biopsy. Herein, a size-selective affinity filtration system, named Selective,...


Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 81 ◽  
Author(s):  
Alexey S. Rzhevskiy ◽  
Sajad Razavi Bazaz ◽  
Lin Ding ◽  
Alina Kapitannikova ◽  
Nima Sayyadi ◽  
...  

During the last decade, isolation of circulating tumour cells via blood liquid biopsy of prostate cancer (PCa) has attracted significant attention as an alternative, or substitute, to conventional diagnostic tests. However, it was previously determined that localised forms of PCa shed a small number of cancer cells into the bloodstream, and a large volume of blood is required just for a single test, which is impractical. To address this issue, urine has been used as an alternative to blood for liquid biopsy as a truly non-invasive, patient-friendly test. To this end, we developed a spiral microfluidic chip capable of isolating PCa cells from the urine of PCa patients. Potential clinical utility of the chip was demonstrated using anti-Glypican-1 (GPC-1) antibody as a model of the primary antibody in immunofluorescent assay for identification and detection of the collected tumour cells. The microchannel device was first evaluated using DU-145 cells in a diluted Dulbecco’s phosphate-buffered saline sample, where it demonstrated >85 (±6) % efficiency. The microchannel proved to be functional in at least 79% of cases for capturing GPC1+ putative tumour cells from the urine of patients with localised PCa. More importantly, a correlation was found between the amount of the captured GPC1+ cells and crucial diagnostic and prognostic parameter of localised PCa—Gleason score. Thus, the technique demonstrated promise for further assessment of its diagnostic value in PCa detection, diagnosis, and prognosis.


Sign in / Sign up

Export Citation Format

Share Document