Approaches and Decisions for Acute Pediatric TBI Trial

Author(s):  
Keyword(s):  
2021 ◽  
Vol 27 (1) ◽  
pp. 79-86
Author(s):  
Era D. Mikkonen ◽  
Markus B. Skrifvars ◽  
Matti Reinikainen ◽  
Stepani Bendel ◽  
Ruut Laitio ◽  
...  

OBJECTIVETraumatic brain injury (TBI) is a major cause of death and disability in the pediatric population. The authors assessed 1-year costs of intensive care in pediatric TBI patients.METHODSIn this retrospective multicenter cohort study of four academic ICUs in Finland, the authors used the Finnish Intensive Care Consortium database to identify children aged 0–17 years treated for TBI in ICUs between 2003 and 2013. The authors reviewed all patient health records and head CT scans for admission, treatment, and follow-up data. Patient outcomes included functional outcome (favorable outcome defined as a Glasgow Outcome Scale score of 4–5) and death within 6 months. Costs included those for the index hospitalization, rehabilitation, and social security up to 1 year after injury. To assess costs, the authors calculated the effective cost per favorable outcome (ECPFO).RESULTSIn total, 293 patients were included, of whom 61% had moderate to severe TBI (Glasgow Coma Scale [GCS] score 3–12) and 40% were ≥ 13 years of age. Of all patients, 82% had a favorable outcome and 9% died within 6 months of injury. The mean cost per patient was €48,719 ($54,557) (95% CI €41,326–€56,112). The index hospitalization accounted for 66%, rehabilitation costs for 27%, and social security costs for 7% of total healthcare costs. The ECPFO was €59,727 ($66,884) (95% CI €52,335–€67,120). A higher ECPFO was observed among patients with clinical and treatment-related variables indicative of parenchymal swelling and high intracranial pressure. Lower ECPFO was observed among patients with higher admission GCS scores and those who had epidural hematomas.CONCLUSIONSGreater injury severity increases ECPFO and is associated with higher postdischarge costs in pediatric TBI patients. In this pediatric cohort, over two-thirds of all resources were spent on patients with favorable functional outcome, indicating appropriate resource allocation.


Author(s):  
Grace B. McKee ◽  
Laiene Olabarrieta-Landa ◽  
Paula K. Pérez-Delgadillo ◽  
Ricardo Valdivia-Tangarife ◽  
Teresita Villaseñor-Cabrera ◽  
...  

Pediatric traumatic brain injury (TBI) represents a serious public health concern. Family members are often caregivers for children with TBI, which can result in a significant strain on familial relationships. Research is needed to examine aspects of family functioning in the context of recovery post-TBI, especially in Latin America, where cultural norms may reinforce caregiving by family members, but where resources for these caregivers may be scarce. This study examined caregiver-reported family satisfaction, communication, cohesion, and flexibility at three time points in the year post-injury for 46 families of a child with TBI in comparison to healthy control families. Families experiencing pediatric TBI were recruited from a large hospital in Guadalajara, Mexico, while healthy controls were recruited from a local educational center. Results from multilevel growth curve models demonstrated that caregivers of children with a TBI reported significantly worse family functioning than controls at each assessment. Families experiencing pediatric TBI were unable to attain the level of functioning of controls during the time span studied, suggesting that these families are likely to experience long-term disruptions in family functioning. The current study highlights the need for family-level intervention programs to target functioning for families affected by pediatric TBI who are at risk for difficulties within a rehabilitation context.


2018 ◽  
Vol 42 (3) ◽  
pp. 331-344 ◽  
Author(s):  
Angela Hein Ciccia ◽  
Leah Beekman ◽  
Emily Ditmars

Author(s):  
Jane McChesney-Corbeil ◽  
Karen Barlow ◽  
Hude Quan ◽  
Guanmin Chen ◽  
Samuel Wiebe ◽  
...  

AbstractBackground: Health administrative data are a common population-based data source for traumatic brain injury (TBI) surveillance and research; however, before using these data for surveillance, it is important to develop a validated case definition. The objective of this study was to identify the optimal International Classification of Disease , edition 10 (ICD-10), case definition to ascertain children with TBI in emergency room (ER) or hospital administrative data. We tested multiple case definitions. Methods: Children who visited the ER were identified from the Regional Emergency Department Information System at Alberta Children’s Hospital. Secondary data were collected for children with trauma, musculoskeletal, or central nervous system complaints who visited the ER between October 5, 2005, and June 6, 2007. TBI status was determined based on chart review. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for each case definition. Results: Of 6639 patients, 1343 had a TBI. The best case definition was, “1 hospital or 1 ER encounter coded with an ICD-10 code for TBI in 1 year” (sensitivity 69.8% [95% confidence interval (CI), 67.3-72.2], specificity 96.7% [95% CI, 96.2-97.2], PPV 84.2% [95% CI 82.0-86.3], NPV 92.7% [95% CI, 92.0-93.3]). The nonspecific code S09.9 identified >80% of TBI cases in our study. Conclusions: The optimal ICD-10–based case definition for pediatric TBI in this study is valid and should be considered for future pediatric TBI surveillance studies. However, external validation is recommended before use in other jurisdictions, particularly because it is plausible that a larger proportion of patients in our cohort had milder injuries.


2020 ◽  
Vol 29 (1) ◽  
pp. e13-e18
Author(s):  
Karin Reuter-Rice ◽  
Elise Christoferson

Background Severe traumatic brain injury (TBI) is associated with high rates of death and disability. As a result, the revised guidelines for the management of pediatric severe TBI address some of the previous gaps in pediatric TBI evidence and management strategies targeted to promote overall health outcomes. Objectives To provide highlights of the most important updates featured in the third edition of the guidelines for the management of pediatric severe TBI. These highlights can help critical care providers apply the most current and appropriate therapies for children with severe TBI. Methods and Results After a brief overview of the process behind identifying the evidence to support the third edition guidelines, both relevant and new recommendations from the guidelines are outlined to provide critical care providers with the most current management approaches needed for children with severe TBI. Recommendations for neuroimaging, hyperosmolar therapy, analgesics and sedatives, seizure prophylaxis, ventilation therapies, temperature control/hypothermia, nutrition, and corticosteroids are provided. In addition, the complete guideline document and its accompanying algorithm for recommended therapies are available electronically and are referenced within this article. Conclusions The evidence base for treating pediatric TBI is increasing and provides the basis for high-quality care. This article provides critical care providers with a quick reference to the current evidence when caring for a child with a severe TBI. In addition, it provides direct access links to the comprehensive guideline document and algorithms developed to support critical care providers.


2016 ◽  
Vol 31 (6) ◽  
pp. 651.1-651
Author(s):  
S Hile ◽  
J Lenihan ◽  
J Pivonka-Jones ◽  
K Feier-Randall ◽  
S Ashwal

2019 ◽  
Vol 9 (11) ◽  
pp. 319 ◽  
Author(s):  
Erik Fraunberger ◽  
Michael J. Esser

Compared to traumatic brain injury (TBI) in the adult population, pediatric TBI has received less research attention, despite its potential long-term impact on the lives of many children around the world. After numerous clinical trials and preclinical research studies examining various secondary mechanisms of injury, no definitive treatment has been found for pediatric TBIs of any severity. With the advent of high-throughput and high-resolution molecular biology and imaging techniques, inflammation has become an appealing target, due to its mixed effects on outcome, depending on the time point examined. In this review, we outline key mechanisms of inflammation, the contribution and interactions of the peripheral and CNS-based immune cells, and highlight knowledge gaps pertaining to inflammation in pediatric TBI. We also introduce the application of network analysis to leverage growing multivariate and non-linear inflammation data sets with the goal to gain a more comprehensive view of inflammation and develop prognostic and treatment tools in pediatric TBI.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2891-2891 ◽  
Author(s):  
Bhavya S. Doshi ◽  
Shannon L. Meeks ◽  
Jeanne E Hendrickson ◽  
Andrew Reisner ◽  
Traci Leong ◽  
...  

Abstract Trauma is the leading cause of death in children ages 1 to 21 years of age. Traumatic brain injury (TBI) poses a high risk of both morbidity and mortality within the subset of pediatric trauma patients. Numerous adult studies have shown that coagulopathy is commonly observed in patients who have sustained trauma and that the incidence is higher when there is TBI. Previously, it was thought that coagulopathy related to trauma was dilutional (i.e. due to replacement of red cells and platelets without plasma) but more recent studies show that the coagulopathy in trauma is early and likely independent of transfusion therapy. Additionally, abnormal coagulation studies (PT, PTT, INR, platelet count, fibrinogen, and D-dimer) following TBI are associated with increased morbidity and mortality in adults. Although coagulopathy after traumatic brain injury in adults is well documented, the pediatric literature is fairly sparse. A recent study by Hendrickson et al in 2008 demonstrated that coagulopathy is both underestimated and under-treated in pediatric trauma patients who required blood product replacements. Here we present the results of a retrospective pilot study designed to assess coagulopathy in the pediatric TBI population. We analyzed all children admitted to our facility with TBI from January 2012 to December 2013. Patients were excluded if they had underlying diseases of the hemostatic system. All patients had baseline characteristics measured including: age, sex, mechanism of injury, Glasgow Coma Scale (GCS), injury severity score (ISS), initial complete blood count, DIC profile, hematological treatments including transfusions, ICU and hospital length of stay, ventilator days and survival status. Coagulation studies were defined as "abnormal" when they fell outside the accepted reference range of the pediatric hospital laboratory (PT 12.6-15.9, PTT 23.6-42.1 seconds, fibrinogen < 180 mg/dL units, platelets < 185 103/mL and hemoglobin < 11.5 g/dL). Survival was measured as survival at 30 days from admission or last known status at hospital discharge. One hundred and twenty patients met the inclusion criteria of the study and all were included in outcome analysis. Twenty-three of the 120 patients died (19.2%). Logistic regression analysis was used to compare survivors and non-survivors and baseline demographic data showed no difference in age or weight between the two groups with p-values of 0.1635 and 0.1624, respectively. Non-survivors had a higher ISS (30.26 vs 20.92, p-value 0.0004) and lower GCS (3 vs 5.8, p-value 0.0002) compared to survivors. Univariate analysis of coagulation studies to mortality showed statistically significant odds-ratios for ISS (OR 1.09, 95% CI 1.04-1.15), PT (OR 5.91, 95% CI 1.86-18.73), PTT (OR 6.48, 95% CI 2.04-20.52) and platelets (OR 5.63, 95% CI 1.74 – 18.21). Abnormal fibrinogen levels were not predictive of mortality (OR 2.56, 95% CI 0.96-6.79). These results are summarized in Table 1. Our results demonstrate that, consistent with adult studies, abnormal coagulation studies are also associated with increased mortality in pediatric patients. Higher injury severity scores and lower GCS scores are also predictive of mortality. Taken together, these results suggest that possible early correction of coagulopathy in severe pediatric TBI patients could improve outcomes for these patients. Table 1. OR 95% CI p-value ISS 1.09 1.04—1.15 .0009 PT > 15.9 sec 5.91 1.86—18.73 0.0026 PTT > 42.1 sec 6.48 2.04—20.52 0.0015 Fibrinogen < 180 mg/dL 2.56 0.96—6.79 0.0597 Platelets < 185 x 103/mL 5.63 1.74—18.21 0.0040 Disclosures No relevant conflicts of interest to declare.


1999 ◽  
Vol 14 (1) ◽  
pp. 19-19 ◽  
Author(s):  
R. A. Simpson ◽  
D. E. Patton ◽  
S. Widmayer ◽  
L. Peterson ◽  
C. Starratt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document