scholarly journals Bioactive metabolites of Cunninghamella, Biodiversity to Biotechnology

2021 ◽  
Vol 4 (3) ◽  
pp. 01-05
Author(s):  
Waill A. Elkhateeb ◽  
Abdu Ghalib AL Kolaibe ◽  
Ghoson M. Daba

Cunninghamella is a fungal genus that belongs to family Cunninghamellaceae and has been involved as promising tool in many important mycotechnological applications. Cunninghamella is an endophytic fungus, their secondary metabolites are of potential biological activities especially as antimicrobial agents. The aim of this review is to highlight the description, ecology, and important in medicinal and industrial applications of the genus Cunninghamella in general. Moreover, describing the importance and potentials of this fungus in order to encourage for further studies to search, isolate, and purify already known metabolites. Also, screen for, and discover novel metabolites produced by this potent fungi in order to be involved in additional applications.

Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 205
Author(s):  
Liyan Wang ◽  
Kazuo Umezawa

Not only physiological phenomena but also pathological phenomena can now be explained by the change of signal transduction in the cells of specific tissues. Commonly used cellular signal transductions are limited. They consist of the protein–tyrosine kinase dependent or independent Ras-ERK pathway, and the PI3K-Akt, JAK-STAT, SMAD, and NF-κB-activation pathways. In addition, biodegradation systems, such as the ubiquitin–proteasome pathway and autophagy, are also important for physiological and pathological conditions. If we can control signaling for each by a low-molecular-weight agent, it would be possible to treat diseases in new ways. At present, such cell signaling inhibitors are mainly looked for in plants, soil microorganisms, and the chemical library. The screening of bioactive metabolites from deep-sea organisms should be valuable because of the high incidence of finding novel compounds. Although it is still an emerging field, there are many successful examples, with new cell signaling inhibitors. In this review, we would like to explain the current view of the cell signaling systems important in diseases, and show the inhibitors found from deep-sea organisms, with their structures and biological activities. These inhibitors are possible candidates for anti-inflammatory agents, modulators of metabolic syndromes, antimicrobial agents, and anticancer agents.


2021 ◽  
Vol 18 (4) ◽  
pp. 709-721
Author(s):  
Le Ngoc Giang ◽  
Le Thi Hong Minh ◽  
Vu Thi Quyen ◽  
Nguyen Mai Anh ◽  
Nguyen Thi Kim Cuc ◽  
...  

The streptomyces is one of the best characterized ubiquitous filamentous bacteria from the actinobacteriaclass. They are known to produce thousands of specialized metabolite biosynthesis gene clusters (SMBG). Their SMBG clusters have multiple activities ranging from antimicrobial, antitumor, antiviral and probiotic. Streptomyces strain and their isolates with interesting biological activities against gram-positive and gram-negative indicator strains was recently characterised. Currently, they are employed in more than half of all antibiotics used in human and veterinary medicine. With the increase in drug resistance bacteria, it is important to mine for new natural chemicals.In this study, screening via disk-diffusion agar method revealed that Streptomyces sp. PDH23 isolated from the Rhabdastrellaglobostellata marine sponge sample from Da Nang, Vietnam produce antimicrobial agents with a wide spectrum of activities. This species can produce highly active enzymes, which breakdown celluloses, amyloses and proteins. On top of that they are shown to restrict the grow of the gram positive Bacillus cereus ATCC14579 (BC), Staphylococcus aureus ATCC25923 (SA), the gram-negativeVibrio parahaemolyticus ATCC17802 (VP) and the Candida albicans ATCC10231 fungus (CA). They are antimethicillin-resistant S. aureus(MRSA) ATCC33591 andmethicillin-resistantS. epidermidis (MRSE) ATCC35984. The taxonomy of PDH23 was characterized using 16S rRNA analysis. Whole genome sequencing of PDH23 showed 8594820 base pairs with GC content of 72.03%. Mining of secondary metabolites reveals gene clusters responsible for the biosynthesis of known and/or novel secondary metabolites, including different types of terpene, NRPS-like , PKS, PKS-like, hglE-KS, betalactone, melanin, t1pks, t2pks, t3pks, nrps, indole, siderophore, bacteriocin, ectoine, butyrolactone, phenazine.


Planta Medica ◽  
2020 ◽  
Vol 86 (12) ◽  
pp. 805-821 ◽  
Author(s):  
Xiu-Qi Li ◽  
Kuo Xu ◽  
Xin-Min Liu ◽  
Peng Zhang

AbstractFungi are well known for their ability to synthesize secondary metabolites, which have proven to be a rich resource for exploring lead compounds with medicinal and/or agricultural importance. The genera Aspergillus, Penicillium, and Talaromyces are the most widely studied fungal groups, from which a plethora of bioactive metabolites have been characterized. However, relatively little attention has been paid to the genus Paecilomyces, which has been reported to possess great potential for its application as a biocontrol agent. Meanwhile, a wide structural array of metabolites with attractive bioactivities has been reported from this genus. This review attempts to provide a comprehensive overview of Paecilomyces species, with emphasis on the chemical diversity and relevant biological activities of these metabolic products. Herein, a total of 148 compounds and 80 references are cited in this review, which is expected to be beneficial for the development of medicines and agrochemicals in the near future.


Biologia ◽  
2007 ◽  
Vol 62 (3) ◽  
Author(s):  
Silvia Firáková ◽  
Mária Šturdíková ◽  
Marta Múčková

AbstractIn the past few decades groups of scientists have focused their study on relatively new microorganisms called endophytes. By definition these microorganisms, mostly fungi and bacteria, colonise the intercellular spaces of the plant tissues. The mutual relationship between endophytic microorganisms and their host plants, taxanomy and ecology of endophytes are being studied. Some of these microorganisms produce bioactive secondary metabolites that may be involved in a host-endophyte relationship. Recently, many endophytic bioactive metabolites, known as well as new substances, possesing a wide variety of biological activities as antibiotic, antitumor, antiinflammatory, antioxidant, etc. have been identified. The microorganisms such as endophytes may be very interesting for biotechnological production of bioactive substances as medicinally important agents. Therefore the aim of this review is to briefly characterize endophytes and summarize the structuraly different bioactive secondary metabolites produced by endophytic microorganisms as well as microbial sources of these metabolites and their host plants.


2019 ◽  
Author(s):  
Jintao Cheng ◽  
Fei Cao ◽  
Xinai Chen ◽  
Yongquan Li ◽  
Xuming Mao

Abstract Endophytic fungi can produce many active secondary metabolites, which are important resources of natural medicines. However, there is currently little understanding of endophytic fungi at the omics levels. Calcarisporium arbuscula , an endophytic fungus from the healthy fruit of russulaceae, can produce a variety of secondary metabolites with anti-cancer, anti-nematode and antibiotic bioactivities. Comprehensive survey of the endophytic fungi genome and transcriptome will help to understand their capacity to biosynthesize secondary metabolites and lay the foundation for the development of these precious resources. In this study,we reported the high-quality genome sequence of a strain C. arbuscula NRRL 3705 based on Single Molecule Real-Time sequencing technology. The genome of this fungus is over 45 Mb in size, relatively larger than other typical filamentous fungi, and comprises 10,001 predictable genes, encoding at least 762 secretory-proteins, 386 carbohydrate-active enzymes and 177 P450 enzymes. 398 virulence factors and 228 genes related to pathogen-host interactions were also predicted in this fungus. Moreover , 65 secondary metabolite biosynthetic gene clusters were revealed, including the gene cluster for mycotoxins aurovertins. In addition, several gene clusters were predicted to produce various mycotoxins, including aflatoxin, alternariol, destruxin, citrinin and isoflavipucine. Notably, two independent gene clusters were shown possibly involved in the biosynthesis of alternariol. Furthermore, RNA-Seq assay showed that only the expression of aurovertin gene cluster is much stronger than the housekeeping genes under laboratory conditions, consistent with that aurovertins are the predominant metabolites. The gene expression of the remaining 64 gene clusters for compound backbone biosynthesis was all lower than the housekeeping genes, which might partially explain poor production of other secondary metabolites in this fungus.Our omics data along with bioinformatics analysis indicated that C. arbuscula NRRL 3705 contains a large number of biosynthetic gene clusters and has a huge potential to produce profound secondary metabolites. This work also provides the basis for development of endophytic fungi as a new resource of natural products with promising biological activities.


Author(s):  
Hanaa Bahaa Elkhouly ◽  
Eman Zekry Attia ◽  
Amgad Ibrahim Mansour Khedr ◽  
Mamdouh Nabil Samy ◽  
Mostafa Ahmed Fouad

: Marine organisms are recognized as a rich source of bioactive secondary metabolites. The remarkable abundance and diversity of bioactive small molecules isolated from soft corals displayed their essential role in drug discovery for human diseases. Sterols and terpenes, particularly cembranolides, 14-membered cyclic diterpene, demonstrated numerous biological activities, such as antitumor, antimicrobial, antiviral, antidiabetic, anti-osteoporosis and anti-inflammatory. Accordingly, continuous investigation of marine soft corals will be the way for the discovery of a plentiful number of chemical diverse natural products with various biological potentials for prospective pharmaceutical industrial applications. Such review affords plenary inspection of the total secondary metabolites isolated from the Sinularia, from 2008 until 2020, besides their natural sources as well as bioactivities whenever possible.


2020 ◽  
Author(s):  
Jintao Cheng ◽  
Fei Cao ◽  
Xinai Chen ◽  
Yongquan Li ◽  
Xuming Mao

Abstract Background: Endophytic fungi can produce many active secondary metabolites, which are important resources of natural medicines. However, there is currently little understanding of endophytic fungi at the omics levels. Calcarisporium arbuscula, an endophytic fungus from the healthy fruit of Russulaceae, can produce a variety of secondary metabolites with anti-cancer, anti-nematode and antibiotic bioactivities. Comprehensive survey of the endophytic fungi genome and transcriptome will help to understand their capacity to biosynthesize secondary metabolites and lay the foundation for the development of these precious resources.Results: In this study,we reported the high-quality genome sequence of a strain C. arbuscula NRRL 3705 based on Single Molecule Real-Time sequencing technology. The genome of this fungus is over 45 Mb in size, relatively larger than other typical filamentous fungi, and comprises 10,001 predictable genes, encoding at least 762 secretory-proteins, 386 carbohydrate-active enzymes and 177 P450 enzymes. 398 virulence factors and 228 genes related to pathogen-host interactions were also predicted in this fungus. Moreover, 65 secondary metabolite biosynthetic gene clusters were revealed, including the gene cluster for mycotoxins aurovertins. In addition, several gene clusters were predicted to produce various mycotoxins, including aflatoxin, alternariol, destruxin, citrinin and isoflavipucine. Notably, two independent gene clusters were shown possibly involved in the biosynthesis of alternariol. Furthermore, RNA-Seq assay showed that only the expression of aurovertin gene cluster is much stronger than the housekeeping genes under laboratory conditions, consistent with that aurovertins are the predominant metabolites. The gene expression of the remaining 64 gene clusters for compound backbone biosynthesis was all lower than the housekeeping genes, which might partially explain poor production of other secondary metabolites in this fungus.Conclusions: Our omics data along with bioinformatics analysis indicated that C. arbuscula NRRL 3705 contains a large number of biosynthetic gene clusters and has a huge potential to produce profound secondary metabolites. This work also provides the basis for development of endophytic fungi as a new resource of natural products with promising biological activities.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Celiwe Innocentia Nxumalo ◽  
Londeka Sibusisiwe Ngidi ◽  
Jabulani Siyabonga Emmanuel Shandu ◽  
Tsolanku Sidney Maliehe

Abstract Background Endophytes, especially those that are found from ethnopharmacologically noteworthy medicinal plants have attracted attention due to their diverse bioactive metabolites of pharmacological importance. Methods This study aimed at isolating endophytic bacterium from the leaves of Anredera cordifolia CIX1 for its bioactive metabolites. The endophytic isolates were identified by 16S rRNA sequence and investigated for antibiotic sensitivity using different antibiotics. The secondary metabolites were evaluated for antibacterial activity against four bacterial strains. The 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods were used to assess their scavenging activities. The chemical components were analysed by gas chromatography-mass spectrometry (GC-MS). Results Out of 13 isolates, Isolate 1 was identified as Pseudomonas aeruginosa CP043328.1. It was resistant to clindamycin, ertapenem, penicillin G, amoxicillin, cephalothin and kanamycin but sensitive to imipenem, meropenem, and gentamycin. Its extract demonstrated antibacterial activity with minimum inhibitory concentration value of 0.098 against Bacillus cereus (ATCC 10102) and Staphylococcus aureus (ATCC 25925) and 0.391 mg/ml against Escherichia coli (ATCC 25922) and Proteus mirabilis (ATCC 25933). The extract revealed DPPH and ABTS scavenging activities with half maximal inhibitory concentration value of 0.650 mg/ml and 0.15 mg/ml, respectively. The GC-MS revealed a total of 15 compounds with diisooctyl phthalate (50.51%) and [1, 2, 4] oxadiazole, 5-benzyl-3 (10.44%) as major components. Conclusions P. aeruginosa CP043328.1 produced secondary metabolites with antibacterial and antioxidant activities.


2018 ◽  
Vol 25 (2) ◽  
pp. 208-252 ◽  
Author(s):  
Marco Masi ◽  
Lucia Maddau ◽  
Benedetto Teodoro Linaldeddu ◽  
Bruno Scanu ◽  
Antonio Evidente ◽  
...  

Background: Fungi play an important role in terrestrial ecosystems interacting positively or negatively with plants. These interactions are complex and the outcomes are different depending on the fungal lifestyles, saprotrophic, mutualistic or pathogenic. Furthermore, fungi are well known for producing secondary metabolites, originating from different biosynthetic pathways, which possess biological properties of considerable biotechnological interest. Among the terrestrial ecosystems, temperate forests represent an enormous reservoir of fungal diversity. This review will highlight the goldmine of secondary metabolites produced by pathogenic and endophytic fungi of forest trees with focus on their biological activities. Methods: A structured search of bibliographic databases for peer-reviewed research literature was undertaken using a research discovery application providing access to a large and authoritative source of references. The papers selected were examined and the main results were reported and discussed. Results: Two hundred forthy-one papers were included in the review, outlined a large number of secondary metabolites produced by pathogenic and endophiltic fungi and their biological activities, including phytotoxic, antifungal, antioomycetes, antibacterial, brine shrimp lethality, mosquito biting deterrence and larvicidal, cytotoxic, antiproliferative and many other bioactivities. Conclusion: The findings of this review confirm the importance of secondary metabolites produced by pathogenic and endophytic fungi from forest plants growing in temperate regions as an excellent prospects to discover compounds with new bioactivities and mode of actions. In addition, the potential of some metabolites as a source of new drugs and biopesticides is underlined.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 336 ◽  
Author(s):  
Hammad Saleem ◽  
Muhammad Sarfraz ◽  
Hafiz Muhammad Ahsan ◽  
Umair Khurshid ◽  
Syed Asif Jahanzeb Kazmi ◽  
...  

This research endeavors to inspect the chemical and biological profiling of methanol and dichloromethane (DCM) extracts prepared from Abutilon figarianum Webb. Total bioactive constituents and secondary metabolites were assessed via ultra-high performance liquid chromatography (UHPLC-MS). Biological effects were evaluated via antioxidant and enzymes inhibitory assays. The methanol extract was able to give the highest phenolic (51.92 mg GAE/g extract) and flavonoid (72.59 mg QE/g extract) contents and was found to contain 11 bioactive metabolites, including flavonoid, alkaloid, phenolic and fatty acid derivatives, as accessed by UHPLC-MS analysis. Similarly, the phytochemical profiling of the DCM extract tentatively identified the 12 different secondary metabolites, most of these were fatty acid derivatives. The methanol extract was most active in the radical scavenging, reducing power and total antioxidant power assays, while dichloromethane extract showed the highest metal chelating activity. For enzyme inhibition, the DCM extract showed the highest activity against cholinesterases, glucosidase and amylase, whereas methanol extract was most active against tyrosinase. Docking studies have supported the observed biological activity, where isobergapten showed higher activity against tyrosinase (−7.63 kcal/mol) with inhibition constant (2.55 µM), as opposed to other enzymes. The observed antioxidant and inhibitory potentials of A. figarianum against the studied enzymes tend to endorse this plant as a prospective source of bioactive phytochemicals.


Sign in / Sign up

Export Citation Format

Share Document