scholarly journals Evaluation and Projection of Airport Landing Movement Areas based on Statistical Analyses, ICAO 2013 Manuals and KM 44, 2002 Regulation

2020 ◽  
Vol 1 (2) ◽  
pp. 12-17
Author(s):  
Ari Sandhyavitri ◽  
Fiqri Fansyuri

This article demonstrated how to calculate an airport landing movement in systematic five main stages encompassing; (i) data collection (including passengers data, aircraft movements, population, GDP, per capita income, cargos movement, temperatures, ground elevation, slope surface, wind speed, and aircraft characteristics), (ii) forecasting the future traffic demands, (iii) calculating aerodrome reference field length (ARFL), (iv) define aerodrome reference code (ARF), and (v) calculate runway dimensions, taxiways, and apron areas. This article has selected Hang Nadim International Airport (HIA) as a case study. It was identified that the aircraft movements in this airport have increased by an average of 7.30% every year in the periods of 2007 to 2016. This Airport has an existing apron with a capacity of 13 aircraft, while the apron currently has to accommodate 19 aircraft. Therefore, to anticipate future demand. This research evaluated and forecasted the requirements standard for the airport landing movement areas in 2026. Based on the International Civil Aviation Organization (ICAO) 2013 manuals and KM 44, 2002 regulation concerning the National Airport Regulation. This article recommended that the existing runway and taxiways would be adequate to facilitate future aircraft movements up to 2026. However, the apron requires to be expanded to 1,600 m x 150 m (which a capacity of 31 aircraft) for accommodating the apron requirements standard in 2026.

2014 ◽  
Vol 599-601 ◽  
pp. 1605-1609 ◽  
Author(s):  
Ming Zeng ◽  
Zhan Xie Wu ◽  
Qing Hao Meng ◽  
Jing Hai Li ◽  
Shu Gen Ma

The wind is the main factor to influence the propagation of gas in the atmosphere. Therefore, the wind signal obtained by anemometer will provide us valuable clues for searching gas leakage sources. In this paper, the Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) are applied to analyze the influence of recurrence characteristics of the wind speed time series under the condition of the same place, the same time period and with the sampling frequency of 1hz, 2hz, 4.2hz, 5hz, 8.3hz, 12.5hz and 16.7hz respectively. Research results show that when the sampling frequency is higher than 5hz, the trends of recurrence nature of different groups are basically unchanged. However, when the sampling frequency is set below 5hz, the original trend of recurrence nature is destroyed, because the recurrence characteristic curves obtained using different sampling frequencies appear cross or overlapping phenomena. The above results indicate that the anemometer will not be able to fully capture the detailed information in wind field when its sampling frequency is lower than 5hz. The recurrence characteristics analysis of the wind speed signals provides an important basis for the optimal selection of anemometer.


2020 ◽  
Vol 12 (2) ◽  
pp. 155-164
Author(s):  
He Fang ◽  
William Perrie ◽  
Gaofeng Fan ◽  
Tao Xie ◽  
Jingsong Yang

2008 ◽  
Vol 25 (7) ◽  
pp. 1218-1227 ◽  
Author(s):  
Ming-Huei Chang ◽  
Ren-Chieh Lien ◽  
Yiing Jang Yang ◽  
Tswen Yung Tang ◽  
Joe Wang

Abstract Surface signatures and interior properties of large-amplitude nonlinear internal waves (NLIWs) in the South China Sea (SCS) were measured during a period of weak northeast wind (∼2 m s−1) using shipboard marine radar, an acoustic Doppler current profiler (ADCP), a conductivity–temperature–depth (CTD) profiler, and an echo sounder. In the northern SCS, large-amplitude NLIWs propagating principally westward appear at the tidal periodicity, and their magnitudes are modulated at the spring–neap tidal cycle. The surface scattering strength measured by the marine radar is positively correlated with the local wind speed when NLIWs are absent. When NLIWs approach, the surface scattering strength within the convergence zone is enhanced. The sea surface scattering induced by NLIWs is equivalent to that of a ∼6 m s−1 surface wind speed (i.e., 3 times greater than the actual surface wind speed). The horizontal spatial structure of the enhanced sea surface scattering strength predicts the horizontal spatial structure of the NLIW. The observed average half-amplitude full width of NLIWs λη/2 is 1.09 ± 0.2 km; the average half-amplitude full width of the enhanced scattering strength λI/2 is ∼0.57 λη/2. The average half-amplitude full width of the enhanced horizontal velocity convergence of NLIWs λ∂xu/2 is approximately equal to λI/2. The peak of the enhanced surface scattering leads the center of NLIWs by ∼0.46 λη/2. NLIW horizontal velocity convergence is positively correlated with the enhancement of the surface scattering strength. NLIW amplitude is positively correlated with the spatial integration of the enhancement of the surface scattering strength within the convergence zone of NLIWs. Empirical formulas are obtained for estimating the horizontal velocity convergence and the amplitude of NLIWs using radar measurements of surface scattering strength. The enhancement of the scattering strength exhibits strong asymmetry; the scattering strength observed from behind the propagating NLIW is 24% less than that observed ahead, presumably caused by the skewness and the breaking of surface waves induced by NLIWs. Above the center of NLIWs, the surface scattering strength is enhanced slightly, associated with isotropic surface waves presumably induced or modified by NLIWs. This analysis concludes that in low-wind conditions remote sensing measurements may provide useful predictions of horizontal velocity convergences, amplitudes, and spatial structures of NLIWs. Further applications and modification of the presented empirical formulas in different conditions of wind speed, surface waves, and NLIWs or with other remote sensing methods are encouraged.


2014 ◽  
Vol 119 (2) ◽  
pp. 584-593 ◽  
Author(s):  
Marion Benetti ◽  
Gilles Reverdin ◽  
Catherine Pierre ◽  
Liliane Merlivat ◽  
Camille Risi ◽  
...  

2012 ◽  
Vol 12 (7) ◽  
pp. 16259-16292 ◽  
Author(s):  
X. Liu ◽  
J. Li ◽  
Y. Qu ◽  
T. Han ◽  
L. Hou ◽  
...  

Abstract. The main objective of this study is to investigate the formation and evolution mechanism of the regional haze in megacity Beijing by analyzing the process of a severe haze that occurred 20–27 September 2011. Mass concentration and size distribution of aerosol particles as well as aerosol optical properties were concurrently measured at the Beijing urban atmospheric environment monitoring station. Gaseous pollutants (SO2, NO-NO2-NOx, O3, CO) and meteorological parameters (wind speed, wind direction, and relative humidity (RH)) were simultaneously monitored. Meanwhile, aerosol spatial distribution and the height of planetary boundary layer (PBL) were retrieved from the signal of satellite and LIDAR (light detection and ranging). Results showed that high intensity of local pollutants from Beijing urban source is the fundamental cause that led to the regional haze. Meteorological factors such as higher RH, weak surface wind speed, and decreasing height of PBL played an important role on the deterioration of air quality. New particle formation was considered to be the most important factor contributing the formation of haze. In order to improve the atmospheric visibility and reduce the occurrence of the haze, the mass concentration of PM2.5 at dry condition should be less than 60 µg m−3 in Beijing according to the empirical relationship of visibility, PM2.5 mass concentration and RH. This case study may provide valuable information for the public to recognize the formation mechanism of the regional haze event over the megacity, which is also useful for the government to adopt scientific approach to forecast and eliminate the occurrence of regional haze in China.


Sign in / Sign up

Export Citation Format

Share Document