scholarly journals Beneficial Effect Polyunsaturated Fatty Acid-Supplemented Diet on Altered Composition of Plasma Fatty Acids in Patients with Liver Cirrhosis

1989 ◽  
Vol 6 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Misako OKITA ◽  
Akiharu WATANABE ◽  
Takao TSUJI
Autism ◽  
2020 ◽  
Vol 24 (5) ◽  
pp. 1191-1200 ◽  
Author(s):  
Yunru Huang ◽  
Ana-Maria Iosif ◽  
Robin L Hansen ◽  
Rebecca J Schmidt

Prior research studies suggest that maternal polyunsaturated fatty acids could have protective effects on neurodevelopmental outcomes. The objective of this study was to examine associations between maternal polyunsaturated fatty acid intake during pregnancy and risk for autism spectrum disorder and other non-typical development in a prospective cohort. Eligible women already had a child with autism spectrum disorder and were planning a pregnancy or were pregnant with another child. Children were clinically assessed longitudinally and diagnosed at 36 months. Maternal polyunsaturated fatty acid intake during pregnancy was estimated using food frequency questionnaires. Maternal third-trimester plasma polyunsaturated fatty acid concentration was measured by gas chromatography. In all, 258 mother–child pairs were included. Mothers consuming more total omega-3 in the second half of pregnancy were 40% less likely to have children with autism spectrum disorder (relative risk = 0.6, 95% confidence interval: 0.3–0.98). No significant associations were observed between maternal third-trimester plasma polyunsaturated fatty acid subtype concentrations and risk of autism spectrum disorder. However, higher plasma eicosapentaenoic acid and docosahexaenoic acid concentrations were associated with lower non-typical development risk (relative risk ranging from 0.47 to 0.88). This study provides suggestive evidence of associations between risk of autism spectrum disorder in the children and maternal omega-3 intake in late pregnancy but not with third-trimester plasma polyunsaturated fatty acids. Further research is needed to evaluate these potential relationships. Lay abstract Prior studies suggest that maternal polyunsaturated fatty acids intake during pregnancy may have protective effects on autism spectrum disorder in their children. However, they did not examine detailed timing of maternal polyunsaturated fatty acid intake during pregnancy, nor did they evaluate plasma concentrations. This study investigates whether maternal polyunsaturated fatty acids in defined time windows of pregnancy, assessed by both questionnaires and biomarkers, are associated with risk of autism spectrum disorder and other non-typical development in the children. Food frequency questionnaires were used to estimate maternal polyunsaturated fatty acid intake during the first and second half of pregnancy. Gas chromatography measured maternal plasma polyunsaturated fatty acid concentrations in the third trimester. In all, 258 mother–child pairs from a prospective cohort were included. All mothers already had a child with autism spectrum disorder and were planning a pregnancy or pregnant with another child. Children were clinically assessed longitudinally and diagnosed at 36 months. For polyunsaturated fatty acid intake from questionnaires, we only found mothers consuming more omega-3 in the second half of pregnancy were 40% less likely to have children with autism spectrum disorder. For polyunsaturated fatty acid concentrations in the third-trimester plasma, we did not observe any statistical significance in relation to the risk of autism spectrum disorder. However, our study confirmed associations from previous studies between higher maternal docosahexaenoic acid and eicosapentaenoic acid plasma concentrations in the late pregnancy and reduced risk for non-typical development. This study markedly advanced understandings of whether and when maternal polyunsaturated fatty acid intake influences risk for autism spectrum disorder and sets the stage for prevention at the behavioral and educational level.


2002 ◽  
Vol 364 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sabine D'ANDREA ◽  
Hervé GUILLOU ◽  
Sophie JAN ◽  
Daniel CATHELINE ◽  
Jean-Noël THIBAULT ◽  
...  

The recently cloned Δ6-desaturase is known to catalyse the first step in very-long-chain polyunsaturated fatty acid biosynthesis, i.e. the desaturation of linoleic and α-linolenic acids. The hypothesis that this enzyme could also catalyse the terminal desaturation step, i.e. the desaturation of 24-carbon highly unsaturated fatty acids, has never been elucidated. To test this hypothesis, the activity of rat Δ6-desaturase expressed in COS-7 cells was investigated. Recombinant Δ6-desaturase expression was analysed by Western blot, revealing a single band at 45kDa. The putative involvement of this enzyme in the Δ6-desaturation of C24:5n-3 to C24:6n-3 was measured by incubating transfected cells with C22:5n-3. Whereas both transfected and non-transfected COS-7 cells were able to synthesize C24:5n-3 by elongation of C22:5n-3, only cells expressing Δ6-desaturase were also able to produce C24:6n-3. In addition, Δ6-desaturation of [1-14C]C24:5n-3 was assayed invitro in homogenates from COS-7 cells expressing Δ6-desaturase or not, showing that Δ6-desaturase catalyses the conversion of C24:5n-3 to C24:6n-3. Evidence is therefore presented that the same rat Δ6-desaturase catalyses not only the conversion of C18:3n-3 to C18:4n-3, but also the conversion of C24:5n-3 to C24:6n-3. A similar mechanism in the n-6 series is strongly suggested.


2000 ◽  
Vol 88 (6) ◽  
pp. 2199-2204 ◽  
Author(s):  
Tom R. Thomas ◽  
Brian A. Fischer ◽  
William B. Kist ◽  
Kristen E. Horner ◽  
Richard H. Cox

Because n–3 fatty acid ingestion and aerobic exercise each has been associated with diminished postprandial lipemia (PPL), the purpose of this study was to evaluate the effect of a combination of these two factors on PPL. Sedentary men underwent a standard dietary preparation, including a 12-h fast before each trial. Six subjects performed a control trial (fat meal, 100 g fat) and an n–3 fatty acid trial (fat meal after 3 wk of n–3 fatty acid supplementation at 4 g/day). In a parallel experiment, six different subjects underwent a control trial and n–3 fatty acid supplementation + 60 min of exercise before ingestion of the fat meal. Supplementation with n–3 fatty acid significantly decreased baseline triglyceride (TG) concentrations but did not significantly affect PPL. The combination of n–3 fatty acid and exercise had no effect on the postprandial TG response. The present study suggests that n–3 fatty acid supplementation lowers resting TG concentrations but inhibits the beneficial effect of aerobic exercise on the postprandial TG response.


Sign in / Sign up

Export Citation Format

Share Document