scholarly journals Flexural characterization of polymer concrete comprising waste marble and date palm fibers

2019 ◽  
Vol 2 (22) ◽  
pp. 169-182
Author(s):  
Mansour Rokbi ◽  
Zine El Abidine Rahmouni ◽  
Brahim Baali

Three-point bending. Abstract This work is an experimental approach for the development and characterization of a polymer concrete reinforced with natural fibers. The polymer concrete consists of sand (Quartz) and orthophthalic polyester used as a binder. Marble powder was used to ensure the continuity of the particle size of the granular mixture. As reinforcement, 2% of chopped date palm fibers (short, very short or mixed) were added. For comparison, identical polymer concrete flexure specimens reinforced with the same content of short E-glass fibers were also prepared and tested. All specimens were initially cured at room temperature and then post-cured for 6 h at 70°C. The results of three-point bending on smooth specimens with different rates of charges (marble), showed that the flexural and compressive strength were improved by adding 20% of marble, and were 31.80 MPa and 67.42 MPa respectively. The flexural strength of specimens showed that the improvement or the degradation of polymer concrete properties seemed to be attributed to the nature of fibers (treated or untreated), and/or to the fibers sizing (short, very short or mixed).

2020 ◽  
Vol 15 ◽  
pp. 155892502094823
Author(s):  
Samir Benaniba ◽  
Zied Driss ◽  
Mokhtar Djendel ◽  
Elhadj Raouache ◽  
Rabah Boubaaya

Due to respect for the environment and the search for more sustainable materials, scientists have started in recent decades to launch studies on bio-composite materials. It is well known that building materials are among the most commonly used materials and have an obvious negative impact on the environment. The development of environmentally friendly composites as insulating materials in buildings offers practical solutions to reduce energy consumption. Therefore, this work presents the use of a new bio-composite material composed of natural fibers, date palm fibers, cement, and sand. In addition, the study on the effect of adding date palm fibers on the thermo-mechanical characteristics of mortars assesses the thermal insulation properties as well as the water absorption and mechanical performance of this new bio-composite material to use it in the construction of buildings. The percentage by weight of date palm fiber in the test samples varied from 0% to 30% for a fiber size of length equal to 7 mm. The characteristics of these samples were determined experimentally in terms of resistance to bending and compression as well as thermal conductivity. The results show that while increasing the weight of date palm fiber, an obviously reduction in thermal conductivity, flexural, and compressive strength of the composite is observed. Hence, date palm fiber has a positive effect on the thermo-mechanical properties of the composite material. Therefore, it considerably improves the insulating capacity of the mortar.


Author(s):  
M Barbuta ◽  
A A Serbanoiu ◽  
R Teodorescu ◽  
B Rosca ◽  
R Mitroi ◽  
...  

Author(s):  
U. Mahaboob Basha ◽  
D. Mohana Krishnudu ◽  
P. Hussain ◽  
K. Manohar Reddy ◽  
N. Karthikeyan ◽  
...  

In the current work epoxy resin is chosen as matrix, treated Sacharum offinarum ( SugarCane) fiber, Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler are chosen as reinforcement. Room temperature cured Epoxy System filled with Sacharum offinarum fiber and Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler are synthesised by mechanical shear mixer, then kept in a Ultra sonic Sonicator for better dispersion of Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler in the matrix. Different weights of modified Pennisetum typhoides (Jowar)/ Fillet miller (Ragi) filler (1,2,3,4,5 gm wt) has been incorporated into the Epoxy matrix in order to study the variation of Mechanical and Thermal properties.


2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


2021 ◽  
Vol 16 (2) ◽  
pp. 55-66
Author(s):  
Mokhtar Rachedi ◽  
Abdelouahed Kriker

Abstract The negative impact of the production and use of building materials on the environment has become evident, so in recent decades, to find more sustainable, eco-friendly, and low-cost materials, the last research tends to reconsider the use of natural fibers and traditional building materials. This paper aims to develop a bio-composite based on the southern Algerian region's local materials consisting mainly of plaster and waste from date palm trees. Many properties were examined experimentally through previous research of our team (physical, mechanical, and microstructure characteristics) [1, 2] to characterize these materials. Several samples of bio-composite of plaster configurations with short length (20mm) and eight-weight ratios (0.5% - 4%) of palm fibers were prepared for mechanical, thermal, and physical characterizations. In addition, tested all previous properties on the specimens after 28 days of curing in normal conditions. The results show a clear improvement in the bio-composites mechanical performance (an increase in the bending strength with achieving compressive strength) and their thermal properties, which have been well developed (density, thermal conductivity, and specific heat capacity). To enhance the resistance of palm fibers to chemical degradation in the plaster's alkaline environment and improve the adhesion between them, these fibers were treated with a NaOH solution of 1% concentration. The plaster's composites reinforced with date palm fibers can be qualified as eco-friendly and thermal insulation building materials.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1693
Author(s):  
Belgacem Chihaoui ◽  
Ferran Serra-Parareda ◽  
Quim Tarrés ◽  
Francesc Xavier Espinach ◽  
Sami Boufi ◽  
...  

The present work aims at determining the potential of date palm wastes to be applied as reinforcement in polypropylene. For this, fibers were separated from the raw biomass via mechanical defibration in Sprout Waldron equipment. Then, three different treatment strategies were adopted on the fibers, being (i) mechanical, (ii) chemical with NaOH, and (iii) enzymatical with xylanases and pectinases. Fibers were characterized in terms of chemical composition, morphology and SEM. Additionally, PP was reinforced with date palm fibers and the composites’ stiffness was evaluated. The analysis was performed from a macro and micro mechanical viewpoint. The incorporation of 40 and 60 wt.% of DPF-E enhanced the Young’s modulus of PP by 205 and 308%, respectively. The potential of enzymatically treated fibers to replace glass fibers in composites was studied, exhibiting similar stiffening abilities at 60 wt.% of date palm fiber (6.48 GPa) and 40% of glass fibers (6.85 GPa). The intrinsic Young’s modulus of the fibers was set at values around 16, 20 and 24 GPa for mechanical, chemical and enzymatic fibers. From the micromechanical analysis, the efficiency of the reinforcement as well as the contribution of the length and orientation to the Young’s modulus of the composite was evaluated.


2020 ◽  
Vol 33 ◽  
pp. 2838-2841 ◽  
Author(s):  
A. Abraham Eben Andrews ◽  
P. Karthick ◽  
D. Dhaana Sitharthan ◽  
K. Sarath Kumar ◽  
K. Chella Balaji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document