Synthesize and characterization of textile-grade glass fibers/sodium hydroxide treated natural fibers hybrid composite

2020 ◽  
Vol 33 ◽  
pp. 2838-2841 ◽  
Author(s):  
A. Abraham Eben Andrews ◽  
P. Karthick ◽  
D. Dhaana Sitharthan ◽  
K. Sarath Kumar ◽  
K. Chella Balaji ◽  
...  
2014 ◽  
Vol 984-985 ◽  
pp. 285-290
Author(s):  
K. Hari Ram ◽  
R. Edwin Raj

Polymer composites reinforced with natural fibers have been developed in recent years, showing significant potential for various engineering applications due to their inherent sustainability, low cost, light weight and comparable mechanical strength. Sisal is a natural fiber extracted from leaves of Agave Sisalana plants and substituted for natural glass fiber. Six different combinations of specimens were prepared with sisal, sisal-glass and glass fibers with epoxy as matrix at two different fiber orientation of 0-90° and ±45°. Mechanical characterization such as tensile, flexural and impact testing were done to analyze their mechanical strength. It is found that the hybrid composite sisal-glass-epoxy has better and comparable mechanical properties with conventional glass-epoxy composite and thus provides a viable, sustainable alternate polymer composite.


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


2021 ◽  
pp. 204124792110087
Author(s):  
Mohammed Awwalu Usman ◽  
Ibrahim Momohjimoh ◽  
Abdulhafiz Onimisi Usman

Natural fibers are becoming the right candidate material as a substitute for glass fibers in the reinforcement of plastic polymers for various applications. The ease of their processing with minimal energy consumption and the quest to produce biodegradable plastics with lightweight has given natural fibers comparative advantages over synthetic fibers. In this study, groundnut shell powder (GSP) in different forms (untreated, sodium hydroxide treated and ash) were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), X-ray fluorescence (XRF), Nuclear magnetic resonance (NMR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) to evaluate their possible utilization as reinforcement in polymers. GSP was treated with sodium hydroxide for 5 hrs and dried in vacuum for 24 hrs to obtain treated GSP while ash GSP was formed by heating GSP in the furnace at 600 °C for about 3 hrs. The results reveal that sodium hydroxide treatment was very effective in the breaking down of the hydrogen bond with a consequent reduction in the hydrophilicity of the GSP. This would promote GSP bonding with the hydrophobic polymer matrix in the development of natural fiber reinforced plastic polymer composite materials. Ash GSP was found to have the highest crystallinity among the three forms of GSP based on XRD results. Therefore, the result achieved in this work confirmed that treated and ash GSP fibers are good reinforcement material in the production of polymer composites, with the actual choice depending on end-use property requirements of the composite.


2019 ◽  
Vol 2 (22) ◽  
pp. 169-182
Author(s):  
Mansour Rokbi ◽  
Zine El Abidine Rahmouni ◽  
Brahim Baali

Three-point bending. Abstract This work is an experimental approach for the development and characterization of a polymer concrete reinforced with natural fibers. The polymer concrete consists of sand (Quartz) and orthophthalic polyester used as a binder. Marble powder was used to ensure the continuity of the particle size of the granular mixture. As reinforcement, 2% of chopped date palm fibers (short, very short or mixed) were added. For comparison, identical polymer concrete flexure specimens reinforced with the same content of short E-glass fibers were also prepared and tested. All specimens were initially cured at room temperature and then post-cured for 6 h at 70°C. The results of three-point bending on smooth specimens with different rates of charges (marble), showed that the flexural and compressive strength were improved by adding 20% of marble, and were 31.80 MPa and 67.42 MPa respectively. The flexural strength of specimens showed that the improvement or the degradation of polymer concrete properties seemed to be attributed to the nature of fibers (treated or untreated), and/or to the fibers sizing (short, very short or mixed).


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3564
Author(s):  
Arnas Majumder ◽  
Laura Canale ◽  
Costantino Carlo Mastino ◽  
Antonio Pacitto ◽  
Andrea Frattolillo ◽  
...  

The building sector is known to have a significant environmental impact, considering that it is the largest contributor to global greenhouse gas emissions of around 36% and is also responsible for about 40% of global energy consumption. Of this, about 50% takes place during the building operational phase, while around 10–20% is consumed in materials manufacturing, transport and building construction, maintenance, and demolition. Increasing the necessity of reducing the environmental impact of buildings has led to enhancing not only the thermal performances of building materials, but also the environmental sustainability of their production chains and waste prevention. As a consequence, novel thermo-insulating building materials or products have been developed by using both locally produced natural and waste/recycled materials that are able to provide good thermal performances while also having a lower environmental impact. In this context, the aim of this work is to provide a detailed analysis for the thermal characterization of recycled materials for building insulation. To this end, the thermal behavior of different materials representing industrial residual or wastes collected or recycled using Sardinian zero-km locally available raw materials was investigated, namely: (1) plasters with recycled materials; (2) plasters with natural fibers; and (3) building insulation materials with natural fibers. Results indicate that the investigated materials were able to improve not only the energy performances but also the environmental comfort in both new and in existing buildings. In particular, plasters and mortars with recycled materials and with natural fibers showed, respectively, values of thermal conductivity (at 20 °C) lower than 0.475 and 0.272 W/(m⋅K), while that of building materials with natural fibers was always lower than 0.162 W/(m⋅K) with lower values for compounds with recycled materials (0.107 W/(m⋅K)). Further developments are underway to analyze the mechanical properties of these materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


Author(s):  
Yuan Jing ◽  
Z. John Ma ◽  
Richard M. Bennett ◽  
David B. Clarke

Grade separations have been used along High-Speed Rail (HSR) to decrease traffic congestion and the danger that occurs at grade crossings. However, the concern with grade separations is the potential damage due to lateral impact of bridge superstructures by over-height vehicles. This is a concern with existing bridges, and lateral impact is not included in standard bridge code provisions. A new bridge technology, Hybrid Composite Beam (HCB), was proposed to meet the requirements of another HSR objective, that of a sustainable solution for the construction of new and replacement bridges in rail infrastructure. The hybrid composite beam combines advanced composite materials with conventional concrete and steel to create a bridge that is stronger and more resistance to corrosion than conventional materials. The HCB is composed of three main parts; the first is a FRP (fiber reinforced polymer) shell, which encapsulates the other two parts. The second part is the compression reinforcement which consists of concrete or cement grout that is pumped into a continuous conduit fabricated into the FRP shell. The third part of the HCB is the tension reinforcement that could consist of carbon or glass fibers, prestressed strands, or other materials that are strong in tension, which is used to equilibrate the internal forces in the compression reinforcement. The combination of conventional materials with FRP exploits the inherent benefits of each material and optimizes the overall performance of the structure. The behavior of this novel system has been studied during the last few years and some vertical static tests have been performed, but no dynamic or lateral impact tests have been conducted yet. Therefore, the main objective of this study is to evaluate the performance of HCB when subjected to lateral impact loading caused by over-height vehicles. This paper explains the advantages of HCB when used in bridge infrastructures. The commercial software ABAQUS was used to perform the finite element (FE) modeling of a 30ft long HCB. Test data was used to validate the results generated by FE analysis. A constant impact loading with a time duration of 0.1 second was applied to an area at the mid-span of the HCB. Lateral deflection and stress distribution were obtained from FE analysis, and local stress concentration can be observed from the stress contour. Full-scale beam dynamic testing will be conducted in the future research to better study the behavior of HCB when subjected to over-height vehicles.


Sign in / Sign up

Export Citation Format

Share Document