scholarly journals Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young’s Modulus

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1693
Author(s):  
Belgacem Chihaoui ◽  
Ferran Serra-Parareda ◽  
Quim Tarrés ◽  
Francesc Xavier Espinach ◽  
Sami Boufi ◽  
...  

The present work aims at determining the potential of date palm wastes to be applied as reinforcement in polypropylene. For this, fibers were separated from the raw biomass via mechanical defibration in Sprout Waldron equipment. Then, three different treatment strategies were adopted on the fibers, being (i) mechanical, (ii) chemical with NaOH, and (iii) enzymatical with xylanases and pectinases. Fibers were characterized in terms of chemical composition, morphology and SEM. Additionally, PP was reinforced with date palm fibers and the composites’ stiffness was evaluated. The analysis was performed from a macro and micro mechanical viewpoint. The incorporation of 40 and 60 wt.% of DPF-E enhanced the Young’s modulus of PP by 205 and 308%, respectively. The potential of enzymatically treated fibers to replace glass fibers in composites was studied, exhibiting similar stiffening abilities at 60 wt.% of date palm fiber (6.48 GPa) and 40% of glass fibers (6.85 GPa). The intrinsic Young’s modulus of the fibers was set at values around 16, 20 and 24 GPa for mechanical, chemical and enzymatic fibers. From the micromechanical analysis, the efficiency of the reinforcement as well as the contribution of the length and orientation to the Young’s modulus of the composite was evaluated.

2017 ◽  
Vol 895 ◽  
pp. 52-55
Author(s):  
Mourad Chikhi ◽  
Boudjemaa Agoudjil ◽  
Fatiha Mokhtari

In this article greencomposites based on gypsum reinforced with date palm fibers (DPF) were fabricated and investigated experimentally in terms of thermal and mechanical properties. This paper deals with two aspects, the first one is a study on the influence of fibers sizes and content on thermal diffusivity and Young’s modulus of date palm fibers (DPF) reinforced gypsum composite. The second one is an experimental correlation investigation between Young’s modulus and thermal properties (thermal conductivity, thermal diffusivity). According to the results of this study, the Young’s modulus and the thermal diffusivity of the greencomposites is mainly influenced by the interfacial adhesion between the matrix and fibers. The experimental correlation between Young’s modulus and thermal properties shows variant results.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3947
Author(s):  
Ferran Serra-Parareda ◽  
Fabiola Vilaseca ◽  
Roberto Aguado ◽  
Francesc X. Espinach ◽  
Quim Tarrés ◽  
...  

In this study, Young’s modulus of henequen fibers was estimated through micromechanical modeling of polypropylene (PP)-based composites, and further corroborated through a single filament tensile test after applying a correction method. PP and henequen strands, chopped to 1 mm length, were mixed in the presence of maleic anhydride grafted polypropylene (MAPP). A 4 wt.% of MAPP showed an effective enhancement of the interfacial adhesion. The composites were mold-injected into dog-bone specimens and tensile tested. The Young’s modulus of the composites increased steadily and linearly up to 50 wt.% of fiber content from 1.5 to 6.4 GPa, corresponding to a 327% increase. Certainly, henequen fibers showed a comparable stiffening capacity of PP composites than glass fibers. The intrinsic Young’s modulus of the fibers was predicted through well established models such as Hirsch or Tsai-Pagano, yielding average values of 30.5 and 34.6 GPa, respectively. The single filament test performed to henequen strands resulted in values between 16 and 27 GPa depending on the gauge length, although, after applying a correction method, a Young’s modulus of 33.3 GPa was obtained. Overall, the present work presents the great potential for henequen fibers as PP reinforcement. Moreover, relationships between micromechanics models and filament testing to estimate Young’s modulus of the fibers were explored.


2017 ◽  
Vol 5 (4) ◽  
pp. 56-65
Author(s):  
Mustafa Nadhim Owaid ◽  
Sajid Salahuddin Saleem Al-Saeedi ◽  
Idham Ali Abed

In this study, some local available organic matters, which are including wheat straw (Triticum aestivum), sawdust, and fiber of date palm (Phoenix dactylifera L.), were used for growing and cultivating of bright yellow oyster mushroom Pleurotus cornucopiae var. citrinopileatus. The possibility of using date palm fiber (in mixtures with other organic residues) as a substrate for the cultivation and production of fruiting bodies of P. cornucopiae var. citrinopileatus was investigated. This mushroom is capable of biorecycling and utilization of some mixtures of lignocellulosic substrates successfully, especially the mixture S3 (50% wheat straw, 30% sawdust, and 20% date palm fiber). The lower mycelia completion time was 17 days, that shown in bags of the S3 substrate. Date-palm fiber substrate exhibited best growth intensity level (moderate) significantly (p<0.05). The total yield and biological efficiency percent recorded approx. 90 g and 23% on the S3 substrate respectively, as a higher percent significantly (p<0.05), while sawdust substrate alone was an unsuitable medium for cultivation and production of this mushroom. Finally, the use of date-palm fibers in mixtures is usefulness in producing a fresh edible and medicinal mushroom.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-4, Sep-Nov 2016, page: 56-65


2016 ◽  
Vol 5 (3) ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Nadhim Owaid ◽  
Sajid SS Al-Saeedi ◽  
Idham Ali Abed

Five agro-substrates including date palm fibers (fibrillum), wheat straw, white sawdust and their combinations were investigated to grow Pleurotus eryngii. The longer mycelium complete time within bags was 20 days on sawdust (S4), in contrast, the shorter time for mycelium overgrew was completed after 15 days on date palm fiber (S5). In significant (p<0.05), S5 showed the higher growth intensity level (vigorous growth) than other substrates. Thus use of date palm wastes (S5 medium) may be useful for successfully cultivation king oyster mushroom in farm.International Journal of Environment Vol.5(3) 2016, pp.1-10


2020 ◽  
Vol 15 ◽  
pp. 155892502094823
Author(s):  
Samir Benaniba ◽  
Zied Driss ◽  
Mokhtar Djendel ◽  
Elhadj Raouache ◽  
Rabah Boubaaya

Due to respect for the environment and the search for more sustainable materials, scientists have started in recent decades to launch studies on bio-composite materials. It is well known that building materials are among the most commonly used materials and have an obvious negative impact on the environment. The development of environmentally friendly composites as insulating materials in buildings offers practical solutions to reduce energy consumption. Therefore, this work presents the use of a new bio-composite material composed of natural fibers, date palm fibers, cement, and sand. In addition, the study on the effect of adding date palm fibers on the thermo-mechanical characteristics of mortars assesses the thermal insulation properties as well as the water absorption and mechanical performance of this new bio-composite material to use it in the construction of buildings. The percentage by weight of date palm fiber in the test samples varied from 0% to 30% for a fiber size of length equal to 7 mm. The characteristics of these samples were determined experimentally in terms of resistance to bending and compression as well as thermal conductivity. The results show that while increasing the weight of date palm fiber, an obviously reduction in thermal conductivity, flexural, and compressive strength of the composite is observed. Hence, date palm fiber has a positive effect on the thermo-mechanical properties of the composite material. Therefore, it considerably improves the insulating capacity of the mortar.


2021 ◽  
pp. 152808372199075
Author(s):  
Magdi El Messiry ◽  
Affaf Eloufy ◽  
Samar Abdel Latif ◽  
El Shimaa Eid

An analysis of fiber mechanics during cutting is conducted using a rotating cutting set up. It was found that high cutting speeds, low cutting angles, and high cutting normal forces lead to low values of cutting force. In this study, a set of high performance organic and inorganic fiber types are tested throughout different conditions of cut testing. Inorganic fibers gave the lowest specific cutting force. Values of cutting stresses on the edge of the blade were proved to be a function of fibers’ Young’s moduli. Higher Young’s moduli give lower cutting stresses on the blade edge while cutting fibers. Organic fibers were found to have a higher cutting resistance than carbon and glass fibers. A significant indirect correlation was found between the shear stress of the fibers and the fiber Young’s modulus. The value of the cutting force is significantly affected by both normal force and cutting velocity. The analysis of fiber mechanics during cutting is conducted using a rotating cutting set-up. It was found that high cutting speeds, low cutting angles, and high cutting normal forces lead to low values of cutting force. In this study, a set of high performance organic and inorganic fiber types are tested throughout different conditions of cut testing. Inorganic fibers gave the lowest specific cutting force. Values of cutting stresses on the edge of the blade were proved to be a function of fibers Young’s modulus. Higher Young’s modulus gives lower cutting stresses on the blade edge while cutting fibers. Organic fibers were found to have a higher cutting resistance than carbon and glass fibers. A significant indirect correlation was found between the shear stress of the fibers and the fibers Young’s modulus. The value of the cutting force is significantly affected by the normal force, cutting angle, and cutting velocity.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2294
Author(s):  
Esraa M. Abdelkader ◽  
Khaled Nassar ◽  
Juan Melchor ◽  
Guillermo Rus

Mechanical compatibility with the human dentin is a considerable issue when fabricating dental fiber posts. To this purpose, this study introduces a new method of fabricating compatible dental posts using braiding techniques of thermoplastic fibers (matrix) with glass fibers (reinforcement). Fifty fiber-reinforced composite (FRC) posts of thermoplastic yarns polypropylene (PP) braided with continuous filaments glass fibers (GFs) for reinforcement, varying in fiber volume fraction (FVF), and core types are fabricated and tested. Posts are performed using a braiding machine, and braids are placed in an aluminum mold. The filled mold is playced inside an oven at the melting temperature of the polypropylene to produce the final post’s shape. An ultrasonic test is conducted to measure the shear modulus and Young’s modulus of FRC post specimens by measuring the velocities of both the P-wave and S-wave. In order to ensure the accuracy of the measurements, each sample is measured three times, and then the means and standard deviations of each sample are calculated before analyzing the test results using the means of two steps, namely, clustering and comparing the P and R² values of each cluster, which revealed that FVF, fiber mass, and core type of the specimen had a significant effect on the resulted Young’s and shear modulus. The results indicate that the proposed method can fabricate competitive dental posts with regard to different fabricating variables. The samples show Young’s modulus ranges of from 10.08 GPa to 31.83 GPa. The following tested hypothesis is supported: the braiding technique of thermoplastic fibers with glass fibers will improve the mechanical compatibility of the resulting posts (ex vivo).


Sign in / Sign up

Export Citation Format

Share Document