scholarly journals FRACTAL STRUCTURE OF ELECTRODEPOSITED COPPER IN STOCHASTIC REGIMES AND ITS EFFECT ON PHASE FORMATION IN TIN REACTIONS

Author(s):  
A. R. Honda ◽  
V. V. Morozovych ◽  
Ya. D. Korol ◽  
Yu. O. Lyashenko
Author(s):  
G. Lucadamo ◽  
K. Barmak ◽  
C. Michaelsen

The subject of reactive phase formation in multilayer thin films of varying periodicity has stimulated much research over the past few years. Recent studies have sought to understand the reactions that occur during the annealing of Ni/Al multilayers. Dark field imaging from transmission electron microscopy (TEM) studies in conjunction with in situ x-ray diffraction measurements, and calorimetry experiments (isothermal and constant heating rate), have yielded new insights into the sequence of phases that occur during annealing and the evolution of their microstructure.In this paper we report on reactive phase formation in sputter-deposited lNi:3Al multilayer thin films with a periodicity A (the combined thickness of an aluminum and nickel layer) from 2.5 to 320 nm. A cross-sectional TEM micrograph of an as-deposited film with a periodicity of 10 nm is shown in figure 1. This image shows diffraction contrast from the Ni grains and occasionally from the Al grains in their respective layers.


2017 ◽  
Author(s):  
Robson de Farias

<p>In the present work, are calculated the gas formation enthalpies (SE; PM3 and PM6) for tin borates: SnB<sub>2</sub>O<sub>4</sub><sup> </sup>and Sn<sub>2</sub>B<sub>2</sub>O<sub>5</sub>. The calculated values are compared with experimental ones, obtained by Knudsen effusion mass spectrometry [3]. It is shown that SE methods, besides their lower computational time consuming can, indeed, provide reliable gas phase formation enthalpy values for inorganic compounds containing heavy metals.</p>


1998 ◽  
Vol 38 (2) ◽  
pp. 9-15 ◽  
Author(s):  
J. Guan ◽  
T. D. Waite ◽  
R. Amal ◽  
H. Bustamante ◽  
R. Wukasch

A rapid method of determining the structure of aggregated particles using small angle laser light scattering is applied here to assemblages of bacteria from wastewater treatment systems. The structure information so obtained is suggestive of fractal behaviour as found by other methods. Strong dependencies are shown to exist between the fractal structure of the bacterial aggregates and the behaviour of the biosolids in zone settling and dewatering by both pressure filtration and centrifugation methods. More rapid settling and significantly higher solids contents are achievable for “looser” flocs characterised by lower fractal dimensions. The rapidity of determination of structural information and the strong dependencies of the effectiveness of a number of wastewater treatment processes on aggregate structure suggests that this method may be particularly useful as an on-line control tool.


2011 ◽  
Vol 37 (2) ◽  
pp. 549-553
Author(s):  
Byung-Yong Ahn ◽  
Tai-Kwang Park ◽  
Nam-Kyoung Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document