scholarly journals Analysis of technical solutions for preventing admission of formation fluids in the annular space of the well during the waiting on cement time

2019 ◽  
pp. 64-71
Author(s):  
Ya. M. Kurbanov ◽  
N. A. Cheremisina

The creation of a sealed support, providing reliable isolation of layers from each other, is one of the most important tasks in the construction of oil and gas wells. The article presents the most common in recent years in our country and abroad special technological and technical measures used to improve the quality of isolation of oil and gas reservoirs at the stage of cementing and waiting on cement with different gradients of reservoir pressures.  Attention is drawn to technical and technological solutions for preventing admission of formation fluids in the annular space of the well during cementing and waiting on cement. The solution to this problem is based on creating the design pressure at the wellhead in the annulus at a rate proportional to the rate of reduction of the hydrostatic pressure column of cement slurry (drilling mud) due to the structure hardening cement slurry.

Nafta-Gaz ◽  
2021 ◽  
Vol 77 (4) ◽  
pp. 235-243
Author(s):  
Marcin Rzepka ◽  
◽  
Miłosz Kędzierski ◽  

The article presents issues related to the sealing slurry technology concerning gelling processes (i.e., static built-up of gel strength of cement slurries). Based on research conducted around the world, it can be concluded that the rate of gelling of the cement slurry has an important role in the process of preventing possible gas exhalations from the annular space. After the cement slurry is pumped into the borehole (especially in zones with shallow gas horizons), the so-called migration (exhalation) of the formation medium (i.e. uncontrolled outflow of e.g. gas from the annular space) may occur. The most important caused of gas migration from the shallow horizons after casings cementation are the inability to maintain a certain overpressure by the column of the binding cement slurry and too long binding of the cement slurry after pumping into the borehole. The initially liquid cement slurry, when pumped out of the casing, acts as a liquid, creating a certain hydrostatic pressure on the deposit. e.g. gas. However, after some time, the period of building the static gel strength (SGS) starts until the cement sets. The SGS building process, i.e. gelling of the cement slurry, reduces the ability to transmit hydrostatic pressure to the reservoir. The Oil and Gas Institute – National Research Institute has tested a number of cement slurry formulations characterized by different gelling and bonding times. Slurries were made on the basis of three typed of latex with the symbols L1, L2, L3, two types of water glass with symbols S1, S2, amorphous silica with the symbol CB, nano-components based on n-SiO2 and n-Al2O3 with the symbols NS and NA as well as high-molecular weight polymer with the symbol GS. Different amounts of setting accelerator were used with the tested slurries. Tests were carried out for eighteen cement recipes, which made it possible to select the optimal compositions of slurries with short gelling and setting times. The samples containing one of the types of latex in the appropriate concentration, the GS polymer, as well as those containing n-SiO2 and n-Al2O3, showed a very advantageous course of the gelation plot (static build-up of gel strength). Their TT transition times, reflecting the course of gelation, ranged from several to several tens of minutes (which is a proof of high ability to prevent gas migration from shallow gas accumulations). The cement slurries developed at the Oil and Gas Institute – National Research Institute, due to their good technological parameters, could be used in the process of cementing casing strings.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (1) ◽  
pp. 34-46
Author(s):  
Marcin Kremieniewski ◽  

The proper cleaning of the annular space before cementing is one of the most important factors affecting the proper sealing of the casing column. Inadequate or incomplete removal of the mud cake or residues of the mud may result in the formation of uncontrolled gas outflows (migration or exhalation) at the contact of the cement sheath with the rock formation and with the surface of run-down casing. It is related to the lack of compatibility in the contact of the mud and the cement. Additionally, the lack of proper cleaning of the annular space will reduce the adhesion value of the cement sheath to the contact surface. The result of the above may be the lack of adequate stabilization of the column of pipes due to its weakened connection in the lower part with the wall, and in the upper part with the previous column of larger diameter pipes. Therefore, to improve both the tightness of the borehole as well as the quality of the cementation condition, laboratory tests of the efficiency of cleaning the annular space are carried out by measuring the efficiency of washing mud removal. So far, measuring the efficiency of mud removal or the effect of washing utilization have been done using a rotary viscometer. During the test, a mud cake is produced on the rotor surface and then removed with washing liquid. Recently, the Oil and Gas Institute – National Research Institute developed a new method for measuring the efficiency of drilling mud removal by using a newly developed drilling fluid flow simulator (Patent P.423842). The device enables the simulation of the drilling fluid flow (drilling fluid, washing fluid, spacer) in the simulated annular space. It is possible to select the parameters of the flow (delivery rate) and the contact time of the liquid with the tested surface. Due to the different measurement principles during the tests with the viscometer and the simulator, it was decided to conduct a comparison and determine the degree of convergence of the discussed methods. The same rinsing liquids were tested to remove the same type of mud, but using different measurement methods. The obtained values of mud removal efficiency were subjected to the correlation analysis, which made it possible to compare the results of the analyzed measurement methods.


2021 ◽  
Vol 44 (2) ◽  
pp. 125-133
Author(s):  
A. G. Vakhromeev ◽  
S. A. Sverkunov ◽  
R. Kh. Akchurin ◽  
V. M. Ivanishin ◽  
V. V. Ruzhich ◽  
...  

The paper deals with the methodological features of drilling and completion of wells in the fractured natural reservoirs containing oil and gas accumulations with different reservoir pressures of fluid-pressure systems from abnormally high to abnormally low. The authors had studied the fluid-pressure systems of industrial lithium-bromine brines, oil and gas fields and accumulations in the south of the Siberian platform for the period from 1983 to 2019. The article summarizes the main results, including new technical solutions protected by the Russian Federation patents. The authors proposed and patented a series of new technical solutions for the immediate consolidation of natural permeable fractures during the primary opening of the reservoir by drilling, as applied to a fractured reservoir. The main task of the study is to preserve the permeability of the fractured system in the bottomhole formation zone under the action of compressive stresses (rock mass) that increase with the formation of a drawdown cone, primarily in the bottomhole formation zone with the increase in the drawdown (ΔP) above critical values. Such an area is the bottomhole formation zone within a radius of the first meters around the well that penetrated the fractured reservoir. Practice has proved that the use of innovative solutions through the advanced consolidation of permeable fractures in the bottomhole formation zone (of fluid-producing oil- and gas-bearing, water-bearing reservoir) in the open (initial natural) state ensures the preservation of natural permeability of natural filtering fractures of the reservoir with the fluid system reservoir pressure from anomalously low to abnormally high. The solution ensures constant permeability of the fractured filtration system throughout the cleaning cycles of the bottomhole formation zone rocks from drilling mud, obtaining of the true calculated hydrodynamic parameters based on the results of well testing in the modes of the “steady-state production method” and well flow rate (productivity) stabilization under further well operation.


2013 ◽  
Vol 7 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Jun Gu ◽  
Bo Wang ◽  
Jibiao He ◽  
Qinggui Wang ◽  
Guiping Wen ◽  
...  

Based on the method of mud cake to agglomerated cake (MTA), the synergism of mud cake modifier (MCM) with forming agent of agglomerated cake (FAAC) in oil and gas well is studied by means of X-ray diffraction (XRD), environmental scanning electron microscopy (ESEM) and atomic absorption spectroscopy (AAS). The results show that the mud cake with MCM at cement-formation interface (CFI) is corroded by FAAC. And the corrosion spots and cracks are formed. The glassy substance in mud cake is depolymerized by hydrated ions from oilwell cement slurry through these spots and cracks. The soluble ionic groups in mud cake form. The diagenesis in mud cake at CFI occurs. The calcium silicate hydrates (CSH), ettringite, film zeolite, rod zeolite and natrolite gels in mud cake generate. Ultimately, it achieves the integrated solidification and cementation (ISC) among cement paste, agglomerated cake and formation at CFI. This paper explains why the isolation quality of CFI is improved by the MTA method.


Author(s):  
Krunoslav Sedić ◽  
Nediljka Gaurina-Medjimurec ◽  
Borivoje Pašić

Well integrity related to carbon dioxide injection into depleted oil and gas reservoirs can be compromised by corrosion which can affect casing, downhole and surface equipment and well cement. Impact on well cement can cause overall degradation of set cement and lead to migration of carbon dioxide back to the surface. Thus, special types of cements should be used. One of the acceptable solutions is application of cement blends based on a mixture of Portland cement and pozzolans. The present paper deals with optimization of the cement slurry design containing zeolite which is nowadays widely used due to its high pozzolan activity potential. Cement blends containing 20%, 30% and 40% zeolite clinoptilolite were used. Cement slurries were optimized for application in slim hole conditions on CO2 injection wells on Žutica and Ivanić oil fields in Croatia (Europe), where an old and deteriorated production casing was re-lined with new smaller sized one. Results obtained by this study suggest that cement slurry containing zeolite can be optimized for application in well conditions related to CO2 injection and underground storage, ranging from a slim hole to standard size casing cement jobs which leads to an improvement of well integrity related to CO2 injection.


2020 ◽  
Vol 9 (1) ◽  
pp. 46-58
Author(s):  
Hernowo Widodo ◽  
Mohammad Riyadi Setyarto ◽  
Andhy Andhy ◽  
Mohamad Prastya ◽  
Amaliah Annisa

Drilling activity in deep formation usually gave greater challenges to the engineer due to its high pressure and temperature. To minimize this problem, drilling mud needs to be modified into a certain condition where it should be performed well in those extreme situations. The drilling mud quality does not significantly decrease, it simply requires better quality of mud at certain points at high temperatures. Certain additives are needed to maintain their performance. Therefore, this study aims to improve the quality of drilling mud by adding additives from carbon powder originating from coconut shells. Coconut shells are burned and processed until they become nanometer-sized, then used as additives in drilling mud. Then, several analyses such as XRD, SEM, as well as the rheology of drilling mud are evaluated. XRD analysis result shows the element from the coconut shell powder was graphite. Laboratory analysis results indicate that drilling mud with coconut shell powder provides better rheological value compared to the same drilling mud without the additives. It was observed that the mud with coconut shell powder performed better at high pressure.


Author(s):  
I. I. Lube ◽  
N. V. Trutnev ◽  
S. V. Tumashev ◽  
A. V. Krasikov ◽  
A. G. Ul’yanov ◽  
...  

At production of pipes of type 13Cr grade steel used at development of oil and gas deposits in areas with aggressive environment, intensive wear of instrument takes place, first of all, piercing mill mandrels. Factors, influencing the resistivity of the piercing mandrels considered, including chemical composition of the material, the mandrel is made of and its design. Based on industrial experience it was shown, that chrome content in the mandrel material practically does not affect on the increase of its resistivity, since the formed thin protective oxides having high melting temperature, are quickly failed and practically are not restored in the process of piercing. To increase the resistivity of piercing mandrels at production of casing tubes of type 13Cr grade steel, a work was accomplished to select a new material for their manufacturing. The chemical composition of steel presented, which was traditionally used for piercing mandrels manufacturing, as well as a steel grade proposed to increase their resistivity. First, molybdenum content was increased, which increases the characteristics of steel strength and ductility at high temperatures and results in grain refining. Second, tungsten content was also increased, which forms carbides in the steel resulting in an increase of its hardness and “red resistivity”, as well as in preventing grains growth during heating. Third, cobalt content was also increased, which increases heat resistivity and shock loads resistivity. The three elements increase enabled to increase the mandrels resistivity by two times. Results of mandrel test of steel 20ХН2МВ3КБ presented, the mandrel having corrugation on the working cone surface, which enabled to reach the resistivity growth to 12 passes without significant change of instrument cost. Microstructure of mandrels made of steels 20Х2Н4МФА and 20ХН2МВ3КБ shown. Application of the centering pin of special design was tested, which provided forming of a rounding edge on the front billet ends, eliminated undercut of mandrel external surface in the process of secondary billet grip and increase the service life of the piercing mill mandrels. At production of seamless pipes of martensite class type 13Cr stainless steels having L80 group of strength, an increase of piercing mandrel resistivity was reached by more than four times, which together with other technical solutions enabled to increase the hourly productivity of the hot rolling section of Volzhsky pipe plant ТПА 159-426 line by more than two times.


2017 ◽  
pp. 139-145
Author(s):  
R. I. Hamidullin ◽  
L. B. Senkevich

A study of the quality of the development of estimate documentation on the cost of construction at all stages of the implementation of large projects in the oil and gas industry is conducted. The main problems that arise in construction organizations are indicated. The analysis of the choice of the perfect methodology of mathematical modeling of the investigated business process for improving the activity of budget calculations, conducting quality assessment of estimates and criteria for automation of design estimates is performed.


2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


Sign in / Sign up

Export Citation Format

Share Document