scholarly journals Study of Nanofibrils Formation of Fibroin Protein in Specific Thermal and Acidity Conditions

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M Ahrami

Abstract Background: Amyloid fibrils are insoluble arranged aggregates of proteins that are fibrillar in structure and related to many diseases (at least 20 types of illnesses) and also create many pathologic conditions. Therefore understanding the circumstance of fibril formation is very important. Objectives: This study aims to work on fibrillar structure formation of fibroin (as a model protein). Material and Methods: In this experimental study, fibroin was extracted from bombyx mori silk cocoon, and the concentration was obtained by Bradford method. The protein was incubated in a wide range of times (0 min to 7 days) in specific acidity and thermal conditions (pH=1.6, T=70 °C). The assays of UV-vis spectroscopy with congo red, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy and circular dichroism spectroscopy were employed to monitor the fibrillation process. Results: Fibroin assemblies were formed upon the process of aggregation and fibril formation with a variety of morphology ranging from nanoparticles to elongated fibrils. Conclusion: The results showed progressive pathway of fibril formation.

2020 ◽  
Vol 10 ◽  
pp. 184798042096688
Author(s):  
Galo Cárdenas-Triviño ◽  
Sergio Triviño-Matus

Metal colloids in 2-mercaptoethanol using nanoparticles (NPs) of iron (Fe), cobalt (Co), and nickel (Ni) were prepared by chemical liquid deposition method. Transmission electron microscopy, electron diffraction, UV-VIS spectroscopy, and scanning electron microscopy with electron dispersive X-ray spectroscopy characterized the resulting colloidal dispersions. The NPs exhibited sizes with ranges from 9.8 nm for Fe, 3.7 nm for Co, and 7.2 nm for Ni. The electron diffraction shows the presence of the metals in its elemental state Fe (0), Co (0), and Ni (0) and also some compounds FeO (OH), CoCo2S4, and NiNi2S4.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2014 ◽  
Vol 661 ◽  
pp. 8-13 ◽  
Author(s):  
Intan Syaffinazzilla Zaine ◽  
N.A.M. Napiah ◽  
Azmi Mohamad Yusof ◽  
A.N. Alias ◽  
A.M.M. Ali ◽  
...  

The MWCNTs was functionalized by refluxing commercial MWCNTs (a-MWCNTs) in concentrated HNO3/H2SO4 (3:1 v/v) at 100°C for 6 hours. The dispersion of a-MWCNTs and functionalized MWCNTs (f-MWCNTs) were observed after 1 hour sonication in ethanol. Both samples were characterized by UV-vis spectroscopy for dispersion behavior. The dried f-MWCNTs and a-MWCNTs were characterized by Raman spectroscopy to estimate the defect level. The morphology of the samples were analyzed by Transmission Electron Microscopy (TEM). The f-MWCNTs was well dispersed in ethanol within 2 weeks of observations period. The colloidal stability of a-MWCNTs was low as it was easily sediment after 24 hours. The UV-vis spectra of f-MWCNTs show maximum absorbance at 250 nm meanwhile no absorbance was observed for a-MWCNTs. Analysis from Raman spectrum shows that the f-MWCNTs have relative intensity of 1.101 which is higher than a-MWCNTs that have relative intensity of 0.935. The image from TEM revealed that the f-MWCNTs have structural defects and the absence of amorphous carbon on sidewall meanwhile the a-MWCNTs indicate otherwise.


Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


2021 ◽  
Author(s):  
Murali Kumarasamy ◽  
Ngoc Tran ◽  
Javier Patarroyo ◽  
Marco P Monopoli ◽  
Emilia Madarasz ◽  
...  

Abstract Silver nanoparticles (AgNPs) are important and widely used antimicrobials and nanodrug carriers. The increased use of AgNPs in consumer products has raised concerns about nanosafety; for instance, AgNPs may be inhaled and translocate to the brain via olfactory neural stem cells/progenitors. While the biological effects of nanoparticle size have been widely investigated, there are little data on the effects of particle shape on cellular phenotype. Therefore, here we investigated the interactions between AgNP spheres, rods, cubes, and triangles and human plasma proteins and their effects on the viability of NE-4C neural stem cells. Nanoparticles were synthesized by wet chemistry methods and characterized by UV-vis spectroscopy, dynamic light scattering, zeta potential measurement, transmission electron microscopy, nanoparticle tracking analysis, and differential centrifugal sedimentation. NE-4C cell viability was assessed using the MTT reduction assay, and the cellular uptake of differently shaped nanoparticles was monitored by electron microscopy. All 50 nm (in at least one dimension) AgNPs exerted toxic effects, with rods and cubes displaying greater toxicity than spheres and triangles. These cellular and physicochemical results indicate that edges on the AgNPs increase toxicity, presumably due to enhanced ion dissolution from the edges.


Author(s):  
Katarzyna Matras-Postolek ◽  
A. Zaba ◽  
S. Sovinska ◽  
D. Bogdal

Zinc sulphide (ZnS) and zinc selenide (ZnSe) and manganese-doped and un-doped with different morphologies from 1D do 3D microflowers were successfully fabricated in only a few minutes by solvothermal reactions under microwave irradiation. In order to compare the effect of microwave heating on the properties of obtained  nanocrystals, additionally the synthesis under conventional heating was conducted additionally in similar conditions. The obtained nanocrystals were systematically characterized in terms of structural and optical properties using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic activity of ZnSe, ZnS, ZnS:Mn and ZnSe:Mn nanocrystals with different morphologies was evaluated by the degradation of methyl orange (MO) and Rhodamine 6G (R6G), respectively. The results show that Mn doped NCs samples had higher coefficient of degradation of organic dyes under ultraviolet irradiation (UV).


2016 ◽  
Vol 09 (03) ◽  
pp. 1650045 ◽  
Author(s):  
Pei-Ying Li ◽  
Kai-Yu Cheng ◽  
Xiu-Cheng Zheng ◽  
Pu Liu ◽  
Xiu-Juan Xu

Chitosan-ionic liquid conjugation (CILC), which was prepared through the reaction of 1-(4-bromobutyl)-3-methylimidazolium bromide (BBMIB) with chitosan, was firstly used to prepare functionalized graphene composite via the chemical reduction of graphene oxide (GO). The obtained water soluble graphene-based composite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), ultraviolet-visible (UV–Vis) spectroscopy and so on. CILC-RGO showed excellent dispersion stability in water at the concentration of 2.0 mg/mL, which was stable for several months without any precipitate. This may be ascribed to the electrostatic attraction and [Formula: see text]–[Formula: see text] interaction between CILC and graphene.


2016 ◽  
Vol 22 (6) ◽  
pp. 1350-1359 ◽  
Author(s):  
Xiang Li Zhong ◽  
Sibylle Schilling ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractIn recent years, an increasing number of studies utilizing in situ liquid and/or gaseous cell scanning/transmission electron microscopy (S/TEM) have been reported. Because of the difficulty in the preparation of suitable specimens, these environmental S/TEM studies have been generally limited to studies of nanoscale structured materials such as nanoparticles, nanowires, or sputtered thin films. In this paper, we present two methodologies which have been developed to facilitate the preparation of electron-transparent samples from conventional bulk metals and alloys for in situ liquid/gaseous cell S/TEM experiments. These methods take advantage of combining sequential electrochemical jet polishing followed by focused ion beam extraction techniques to create large electron-transparent areas for site-specific observation. As an example, we illustrate the application of this methodology for the preparation of in situ specimens from a cold-rolled Type 304 austenitic stainless steel sample, which was subsequently examined in both 1 atm of air as well as fully immersed in a H2O environment in the S/TEM followed by hyperspectral imaging. These preparation techniques can be successfully applied as a general procedure for a wide range of metals and alloys, and are suitable for a variety of in situ analytical S/TEM studies in both aqueous and gaseous environments.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Rana Saha ◽  
Abhay K. Srivastava ◽  
Tianping Ma ◽  
Jagannath Jena ◽  
Peter Werner ◽  
...  

AbstractMagnetic anti-skyrmions are one of several chiral spin textures that are of great current interest both for their topological characteristics and potential spintronic applications. Anti-skyrmions were recently observed in the inverse tetragonal Heusler material Mn1.4Pt0.9Pd0.1Sn. Here we show, using Lorentz transmission electron microscopy, that anti-skyrmions are found over a wide range of temperature and magnetic fields in wedged lamellae formed from single crystals of Mn1.4Pt0.9Pd0.1Sn for thicknesses ranging up to ~250 nm. The temperature-field stability window of the anti-skyrmions varies little with thickness. Using micromagnetic simulations we show that this intrinsic stability of anti-skyrmions can be accounted for by the symmetry of the crystal lattice which is imposed on that of the Dzyaloshinskii-Moriya exchange interaction. These distinctive behaviors of anti-skyrmions makes them particularly attractive for spintronic applications.


Sign in / Sign up

Export Citation Format

Share Document